Intentional Automata

Modelling *Reo* connectors

David Costa costa@cwi.nl

CWI

Amsterdam, October 23 - 2007

Outline

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

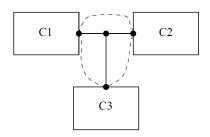
CIC 2007

Outline

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

Our interest in Connectors

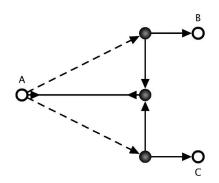
models, methods, tools and techniques;



4/32

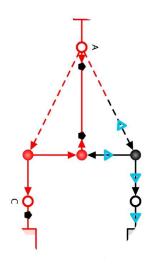
Our interest in Connectors

Connector design and specification



Our interest in Connectors

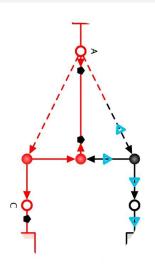
Connector Synthesis/Code generation



4/32

Our interest in Connectors

Formal analysis of non-functional properties



Outline

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

Automata formalisms

Interface Automata [Alfaro, Hezinger '01]

- Automata model that captures temporal aspects of software components interface.
- Input assumptions about the order in which the methods of a component are called;
- Output assumptions about the order in which the component calls external methods;
- Automatic compatibility check;
- Can be seen as a type system for component interaction.

Automata formalisms

Constraint Automata [BSAR'04]

We have heard a lot about it on yesterday's afternoon session.

- automata model used to specify the operational behaviour of Reo connectors;
- synchronization constraints are encoded by transitions that fire when satisfying a given data constraint;
- automata operators product and hide model Reo operators join and hiding.
- Well know techniques of finite automata for equivalence and simulation are adapted to Constraint Automata.

7/32

Automata formalisms

CA falls short when it comes:

- to describe context-sensitive connectors;
- in providing an accurate level of abstraction to reason about non-functional properties.

Connector Colouring [CCA'05]

- Provides accurate semantics for context-sensitive Reo connectors;
- And models Reo join operation to allow composition of context-sensitive connectors.

8/32

Outline

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Red
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

Connector

- is a black box
- with an interface defined by a set of ports $\Sigma \subseteq \mathcal{N}$ ames = $\{A, B, C, ...\}$;
- (a) the connector degree is given by $\sharp \Sigma$
 - Reo channels are connectors of degree 2;
 - merger and replicator are connectors of degree 3.

- A port is an interaction point;
- We associate a name $N \in \mathcal{N}$ ames to a port.

Connector

- is a black box;
- with an interface defined by a set of ports $\Sigma \subseteq \mathcal{N}$ ames = $\{A, B, C, ...\}$;
- the connector degree is given by #Σ;
 - Reo channels are connectors of degree 2;
 - merger and replicator are connectors of degree 3.

- A port is an interaction point;
- \bigcirc We associate a name $N \in \mathcal{N}$ ames to a port.

Connector

- is a black box;
- with an interface defined by a set of ports $\Sigma \subseteq \mathcal{N}$ ames = $\{A, B, C, ...\}$;
- the connector degree is given by #Σ;
 - Reo channels are connectors of degree 2;
 - merger and replicator are connectors of degree 3.

- A port is an interaction point;
- ② We associate a name $N \in \mathcal{N}$ ames to a port.

Connector

- is a black box;
- with an interface defined by a set of ports $\Sigma \subseteq \mathcal{N}$ ames = $\{A, B, C, ...\}$;
- the connector degree is given by #Σ;
 - Reo channels are connectors of degree 2;
 - merger and replicator are connectors of degree 3.

- A port is an interaction point;
- ② We associate a name $N \in \mathcal{N}$ ames to a port.

Request and Firing events

Request

 The environment can interact with a port of a connector performing on it a request.

Request-set or Experiment

- Given a connector C with a set of ports Σ;
- A request-set or experiment is a subset $R \subseteq \Sigma$ of the set of ports;
- The different ways the environment can interact with a connector is given by the set of all request-sets $\mathcal{R} = \mathcal{P}\Sigma$;
- We call \mathcal{R} the experiments of C.

Request and Firing events

Request

 The environment can interact with a port of a connector performing on it a request.

Request-set or Experiment

- Given a connector C with a set of ports Σ;
- A request-set or experiment is a subset $R \subseteq \Sigma$ of the set of ports;
- The different ways the environment can interact with a connector is given by the set of all request-sets $\mathcal{R} = \mathcal{P}\Sigma$;
- We call \mathcal{R} the experiments of C.

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The experiments of *Sync* are given by the set $\mathcal{P}\Sigma$;
- $\mathscr{R} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$

David Costa (CWI)

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The experiments of *Sync* are given by the set $\mathcal{P}\Sigma$;
- $\mathscr{R} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$

empty request-set, ∅

The empty request-set ∅ denotes the empty experiment–none of the ports of *Sync* receives a request from the environment;

David Costa (CWI) Intentional Automata

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The experiments of *Sync* are given by the set $\mathcal{P}\Sigma$;
- $\mathscr{R} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$

request-set {A}

The request-set $\{A\}$ denotes the experiment that involves receiving a request on port A and not on port B;

David Costa (CWI)

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The experiments of *Sync* are given by the set $\mathcal{P}\Sigma$;
- $\mathscr{R} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$

request-set {B}

Similarly, the request-set $\{B\}$ denotes the experiment that involves receiving a request on port B but not on port A;

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The experiments of *Sync* are given by the set $\mathcal{P}\Sigma$;
- $\mathscr{R} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$

request-set {A, B}

Finally the request-set $\{A, B\}$ denotes an experiment that involves receiving requests on both ports A and B simultaneously.

CIC 2007

Request and Firing events

Firing

A connector can fire a port allowing data to flow through the port;

Firing-set

- A firing-set is a subset $F \subseteq \Sigma$ of the set of ports;
- The set of all possible firing-set of a connector is denoted by \mathscr{F} $(\mathscr{F} \subseteq \mathcal{P}\Sigma)$;
- We call F the firings of the connector.

Back to our example

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The firings of *Sync* are given by the set:
- $\mathscr{F} = \{\emptyset, \{A, B\}\}$

empty firing-set, Ø

The empty firing-set ∅ denotes *quiescence*—no firing at any of the ports of *Sync*;

Back to our example

Synchronous channel

Sync – A synchronous channel with the set of ports $\Sigma = \{A, B\}$

- The firings of *Sync* are given by the set:
- $\mathscr{F} = \{\emptyset, \{A, B\}\}$

request-set {A, B}

The firing-set $\{A, B\}$ denotes the simultaneous firing of ports A and B. Implying simultaneous data-flow in the two ports.

Interaction Step

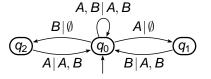
Transition

request-set | firing-set

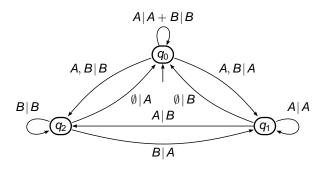
A connector processes one (possibly empty) request-set R ∈ R
and produces a (possibly empty) firing-set F ∈ F in each
interaction step;

Internal transition

• A interaction step $\emptyset \mid \emptyset$ that involves the empty request-set and the empty firing-set, involves none of the ports of the automaton and is thus an internal transition.



Non-deterministic example



Formal definition

Non-deterministic Intentional Automata

Definition

A non-deterministic intentional automaton over the set of ports Σ is a system $\mathcal{A} = (Q, \mathcal{R}, \mathcal{F}, \delta)$, with

- a set of states Q:
- a transition function $\delta: \mathbb{Q} \to \mathcal{P}(\mathscr{F} \times \mathbb{Q})^{\mathscr{R}}$ that associates for every state $q \in Q$,
 - a function $\delta(q) \in \mathcal{P}(\mathscr{F} \times \mathsf{Q})^{\mathscr{R}}$, that is, $\delta(q) : \mathscr{R} \longrightarrow \mathcal{P}(\mathscr{F} \times \mathsf{Q})$ where
 - \mathcal{R} and \mathcal{F} are respectively the experiments and firings of \mathcal{A} .

David Costa (CWI) Intentional Automata

Formal definition

Non-deterministic Intentional Automata

Optionally

- \mathcal{A} can have a distinguished set of initial states $I \subset Q$;
- in this case the intentional automaton is denoted by $\mathcal{A} = (Q, \mathcal{R}, \mathcal{F}, \delta, I).$
- If no set of initial states is defined then all states in Q are initial.

18/32

David Costa (CWI) Intentional Automata

Equivalence of automata and Operations on automata

Notions of equivalence

CCS-like notion of strong and weak equivalence

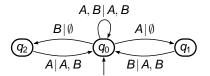
Operations on automata

- Restriction (enables to limit the number of connectors or components that can connect to a port);
- Hiding (conceal the internal structure of the composite connector, namely internal ports and internal interactions);
- Product (combination of interleaving and synchronous composition);

David Costa (CWI) Intentional Automata

What makes an Intentional Automata a valid model in Reo?

Intentional automata model for Sync



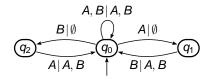
We start by considering structured states in the automata

(s,P) where s refers to the actual state of the connector and P is the set of pending ports.

CIC 2007

What makes an Intentional Automata a valid model in Reo?

Intentional automata model for Sync

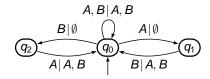


From abstract states to structured states

Intentional Automata CIC 2007 20 / 32

What makes an Intentional Automata a valid model in Reo?

Intentional automata model for Sync



From abstract states to structured states

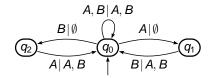
$$\bullet \ (s,\emptyset) \xrightarrow{A|\emptyset} q_1$$

•
$$q_1 \xrightarrow{B|A,B} (s,\emptyset)$$

Intentional Automata CIC 2007 20 / 32

What makes an Intentional Automata a valid model in Reo?

Intentional automata model for Sync



From abstract states to structured states

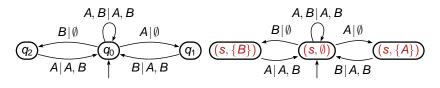
$$\bullet (s,\emptyset) \xrightarrow{A|\emptyset} (s,\{A\})$$

•
$$(s, \{A\}) \xrightarrow{B|A,B} (s,\emptyset)$$

David Costa (CWI) Intentional Automata CIC 2007 20 / 32

What makes an Intentional Automata a valid model in Reo?

Intentional automata model for Sync



From abstract states to structured states

- $\bullet (s,\emptyset) \xrightarrow{A|\emptyset} (s,\{A\})$
- $\bullet (s, \{A\}) \xrightarrow{B|A,B} (s,\emptyset)$

David Costa (CWI) Intentional Automata CIC 2007 20 / 32

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

Reo class of Intentional Automata

Definition

A $\mathcal{R}eo$ intentional automaton over the set of ports Σ , and the set of connector states S is a non-deterministic intentional automaton $A = (Q, \mathcal{R}, \mathcal{F}, \delta)$, with

- the set of configurations $Q = S \times \mathcal{P}\Sigma$ and
- the transition function $\delta: Q \to \mathcal{P}(\mathscr{F} \times Q)^{\mathscr{R}}$ that associates with every state $q = (s, P) \in Q$ a function $\delta_q: \mathscr{R}|_P \longrightarrow \mathcal{P}_{ne}(\mathscr{F} \times Q)$ such that

$$\delta_{(s,P)}(R) = \delta_{(s,\emptyset)}(R \cup P).$$

22 / 32

David Costa (CWI) Intentional Automata CIC 2007

Configuration Table

Semantic property

$$\delta_{(s,P)}(R) = \delta_{(s,\emptyset)}(R \cup P)$$

23 / 32

David Costa (CWI) Intentional Automata

- - Previous Work
- - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector

Lossysync

intentional automaton *Lossysync* = $(Q, \mathcal{R}, \mathcal{F}, \delta, I)$

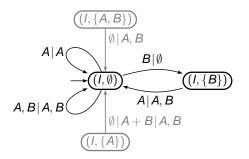
- $S = \{I\},$
- $\mathscr{R} = \mathcal{P}\{A, B\},$
- $\mathscr{F} = \{\emptyset, \{A\}, \{A, B\}\},\$
- and δ is given by the configuration table *I*:

	s R	Ø	{ A }	{ <i>B</i> }	{A, B}
Ī	1	$\langle \emptyset, (I, \emptyset) \rangle$	$\langle \{A\}, (I,\emptyset) \rangle$	$\langle \emptyset, (I, \{B\}) \rangle$	$\langle \{A,B\},(I,\emptyset)\rangle$

• $I = \{(I,\emptyset)\}$

Lossysync

The respective labelled transition diagram



FIFO₁

intentional automaton $FIFO_1 = (Q, \mathcal{R}, \mathcal{F}, \delta, I)$

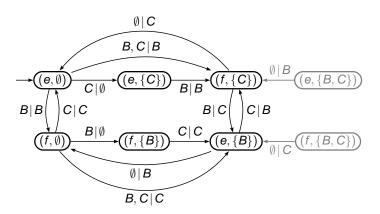
- $S = \{e, f\},$
- $\mathscr{R} = \mathcal{P}\{B, C\},$
- $\mathscr{F} = \{\emptyset, \{B\}, \{C\}\},\$
- and δ is given by the following configuration table:

R s	Ø	{ <i>B</i> }	{ C }	{ <i>B</i> , <i>C</i> }
е	$\langle\emptyset,(\mathbf{e},\emptyset) angle$	$\langle \{B\}, (f,\emptyset) \rangle$	$\langle \emptyset, (e, \{C\}) \rangle$	$\langle \{B\}, (f, \{C\}) \rangle$
f	$\langle \emptyset, (f, \emptyset) \rangle$	$\langle \emptyset, (f, \{B\}) \rangle$	$\langle \{C\}, (e, \emptyset) \rangle$	$\langle \{C\}, (e, \{B\}) \rangle$

• *I* = {(e, ∅)}

David Costa (CWI)

FIFO₁



- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

Reo join and hide operations

Semantics

```
[\![ Join ]\!] = restrict \cdot product
[\![ Hide ]\!] = hiding
```

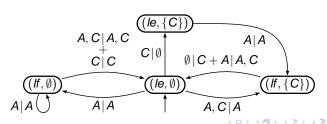

- Motivation
 - Connectors for Composite Systems/Services
 - Previous Work
- Intentional Automata
 - Concepts and Definition
- Modelling Reo
 - Reo class of Intentional Automata RIA
 - Examples: Primitive Connector
 - Reo Join and Hide operations
 - Example: Composite Connector

$(Lossysync \bowtie FIFO_1)[B]$

- $S = \{le, lf\},\$
- $\mathscr{R} = \mathcal{P}\{A, C\},$
- $\mathscr{F} = \{\emptyset, \{A\}, \{C\}\},\$
- and δ is given by the following configuration tables e and f:

	•			
R / s	Ø	{ A }	{ C }	{ <i>A</i> , <i>C</i> }
le	$\langle\emptyset,(\textit{le},\emptyset)\rangle$	$\langle \{A\}, (If, \emptyset) \rangle$	$\langle \emptyset, (\textit{le}, \{\textit{C}\}) \rangle$	$\langle \{A\}, (If, \{C\}) \rangle$
lf	$\langle \emptyset, (\mathit{If}, \emptyset) \rangle$	$\langle \{A\}, (If, \emptyset) \rangle$	$\langle \{C\}, (Ie, \emptyset) \rangle$	$\langle \{A,C\}, (Ie,\emptyset) \rangle$

• $I = \overline{\{(Ie,\emptyset)\}}$



CIC 2007 32 / 32