Cobases coalgebraically

Clemens Kupke joint work in progress with Jan Rutten

Centrum voor Wiskunde en Informatica (CWI)

Coinduction, Interaction & Composition 2007

Outline

- 1. Hidden Algebra & Cobases
- 2. Cobases coalgebraically
- 3. Proof principle(s) & definition scheme(s) for streams

Outline

- 1. Hidden Algebra & Cobases
- 2. Cobases coalgebraically
- 3. Proof principle(s) & definition scheme(s) for streams

Motivation

- final coalgebras have several "representations" how can we understand & use this phenomenon
- definition schemes for stream & stream functions

Hidden Algebra (simplified)

Hidden specification

A hidden specification is a tuple (Σ, E) , where

- 1. Σ is a many-sorted signature containing *hidden* and *visible sorts*,
- 2. *E* is a set of equations.

(Σ, E) -algebra

A (Σ, E) -algebra is an algebra for the signature Σ that "behaviourally satisfies" the equations in E.

Hidden Stream Algebra (I)

Hidden sort: Stream

Visible sort: N

 $\texttt{head} \; : \; \texttt{Stream} \to \mathbb{N}$

tail : $Stream \rightarrow Stream$

cons : $\mathbb{N} \times \text{Stream} \to \text{Stream}$

odd : Stream \rightarrow Stream even : Stream \rightarrow Stream

operations (Σ_s)

Hidden Stream Algebra (I)

```
\begin{array}{lll} \operatorname{head}(\operatorname{cons}(N,S)) &=& N \\ \operatorname{tail}(\operatorname{cons}(N,S)) &=& S \\ \\ \operatorname{head}(\operatorname{even}(S)) &=& \operatorname{head}(S) \\ \operatorname{tail}(\operatorname{even}(S)) &=& \operatorname{odd}(\operatorname{tail}(S)) \\ \\ \operatorname{head}(\operatorname{odd}(S)) &=& \operatorname{head}(\operatorname{tail}(S)) \\ \operatorname{tail}(\operatorname{odd}(S)) &=& \operatorname{even}(\operatorname{tail}(\operatorname{tail}(S))) \end{array} \right\} \text{ equations } (\underline{E_S})
```

Models: (Σ_s, E_s) -algebras

Hidden Congruences for Streams

Definition:

A relation $R \subseteq A_{\texttt{Stream}} \times A_{\texttt{Stream}}$ is a hidden congruence if $(\sigma, \tau), (\sigma', \tau') \in R$ implies

- (i) $head(\sigma) = head(\tau)$,
- (ii) $(tail(\sigma), tail(\tau)) \in R$, and
- (iii) for all $n \in \mathbb{N}$, $(cons(n, \sigma) = cons(n, \tau)) \in R$.
- (iv) $(even(\sigma), even(\tau)) \in R$,
- (v) $(odd(\sigma), odd(\tau)) \in R$,

In other words

If R is behaves as a congruence w.r.t. the operations in Σ_s .

Experiments

Definition

An experiment is a term

$$t[\bullet: Stream]$$

of ("visible") sort $\mathbb N$ containing one occurrence of a "place-holder" of type Stream.

Examples

```
head(\bullet), head(tail^n(\bullet)), head(cons(n, \bullet))...
```

Non-example

tail(•) ("outcome not observable")

Behavioural equivalence

Given a (Σ_s, E_s) -algebra A.

Definition

We define a relation \equiv on A by putting

$$\sigma \equiv \tau$$
 : \Leftrightarrow $t[\sigma] = t[\tau]$ for all experiments $t[\bullet]$.

If $\sigma \equiv \tau$ we say σ and τ are behaviourally equivalent.

Theorem (Roşu)

Behavioural equivalence is the largest hidden congruence.

Coinduction Method

Suppose we want to show $\sigma_1 \equiv \sigma_2$. Then

- Step 1. Pick an "appropriate" binary relation *R* on terms of type Stream.
- Step 2. Prove that *R* is a hidden congruence.
- Step 3. Show that $(\sigma_1, \sigma_2) \in R$.

Issues

Redundancy

In order to prove that *R* is a hidden congruence for the stream specification, one has to show that it is a congruence w.r.t. *all* operations.

Alternative representations

We can describe a stream not only using $\{\text{head}, \text{tail}\}\$ but, e.g., also using $\{\text{head}, \text{even}, \text{odd}\}$.

Some Notation

Notation

For terms $t, t' \in T_{Stream}$ we write

$$(\Sigma_s, E_s) \models t = t'$$

if for all (Σ_s, E_s) -algebras and all valuations $\theta : \text{Var} \to A$:

$$\theta(t) \equiv \theta(t').$$

Cobases (simplified)

Cobasis

A set of operations $\Delta \subseteq \Sigma_s$ is called *cobasis* if for all $t, t' \in T_{\text{Stream}}$

$$\frac{(\Sigma_s, E_s) \models \delta(t) = \delta(t') \text{ for all "suitable" } \delta \in \Delta}{(\Sigma_s, E_s) \models t = t'.}$$

Intuition

The operations in Δ are sufficient to *observe* all the relevant information about a given stream.

Examples

Cobases

- \bullet \sum_{s}
- {head, tail}
- {head, even, odd}

Non-examples

- {head, even}
- {tail,odd}

(simplified: for a moment we forget about even and odd)

A given stream algebra A can be written as follows:

$$A \xrightarrow{\langle h, t, \lambda x \lambda n. c(n, x) \rangle} \mathbb{N} \times A \times A^{\mathbb{N}}$$

The final stream algebra

$$\mathbb{N}^{\omega} \xrightarrow{\langle \text{head}, \text{tail}, \lambda x \lambda n. \text{cons}(n, x) \rangle} \mathbb{N} \times \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\mathbb{N}}$$

(simplified: for a moment we forget about even and odd)

A given stream algebra A can be written as follows:

$$A \xrightarrow{\langle h, t, \lambda x \lambda n. c(n, x) \rangle} \mathbb{N} \times A \times A^{\mathbb{N}}$$

The final stream algebra

$$\mathbb{N}^{\omega} \xrightarrow{\langle \text{head}, \text{tail}, \lambda x \lambda n. \text{cons}(n, x) \rangle} \mathbb{N} \times \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\mathbb{N}}$$

(simplified: for a moment we forget about even and odd)

A given stream algebra A can be written as follows:

$$A \xrightarrow{\langle h,t,\lambda x \lambda n.c(n,x) \rangle} \mathbb{N} \times A \times A^{\mathbb{N}}$$

The final stream algebra

$$\mathbb{N}^{\omega} \xrightarrow{\langle \text{head}, \text{tail}, \lambda x \lambda n. \text{cons}(n, x) \rangle} \mathbb{N} \times \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\mathbb{N}}$$

(simplified: for a moment we forget about even and odd)

A given stream algebra A can be written as follows:

$$A \xrightarrow{\langle h, t, \lambda x \lambda n. c(n, x) \rangle} \mathbb{N} \times A \times A^{\mathbb{N}}$$

The final stream algebra

$$\mathbb{N}^{\omega} \xrightarrow{\langle \text{head}, \text{tail}, \lambda x \lambda n. \text{cons}(n, x) \rangle} \mathbb{N} \times \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\mathbb{N}}$$

(simplified: for a moment we forget about even and odd)

A given stream algebra A can be written as follows:

$$A \xrightarrow{\langle h, t, \lambda x \lambda n. c(n, x) \rangle} \mathbb{N} \times A \times A^{\mathbb{N}}$$

The final stream algebra:

$$\mathbb{N}^{\omega} \xrightarrow{\langle \text{head}, \text{tail}, \lambda x \lambda n. \text{cons}(n, x) \rangle} \mathbb{N} \times \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\mathbb{N}}$$

The final stream (co-)algebra

Let $(\Omega, \langle H, T, C \rangle)$ be the final $\mathbb{N} \times ()^{\mathbb{N}}$ -coalgebra. Furthermore put

$$P := \{t \in \Omega \mid \text{for all } n \in \mathbb{N}. \ H(C(n,t)) = n \& T(C(n,t)) = t\}.$$

Let $\Box P$ denote the largest subcoalgebra of $(\Omega, \langle H, T, C \rangle)$ that is contained in P.

Proposition

 $(\mathbb{N}^\omega,\langle \mathtt{head},\mathtt{tail},\mathtt{cons}\rangle)\cong \Box P.$

Corollary

The coalgebra (\mathbb{N}^{ω} , $\langle \text{head}, \text{tail}, \text{cons} \rangle$) is final among all $\mathbb{N} \times (-)^{\mathbb{N}}$ -coalgebras that satisfy the equations E_s .

From signature to functors

We do only an example:

Consider $\Delta = \{ \text{head}, \text{tail}, \text{cons} \}$

 $\texttt{head} \; : \; \; \texttt{Stream} \to \mathbb{N}$

 $\texttt{tail} \; : \; \texttt{Stream} \to \texttt{Stream}$

 $\texttt{cons} \; : \; \texttt{Stream} \to (\texttt{Stream})^{\mathbb{N}}$

Functor G_{\triangle}

$$G_{\wedge}X := \mathbb{N} \times X \times (X)^{\mathbb{N}}$$

From signature to functors

We do only an example:

```
Consider \Delta = \{ \text{head}, \text{tail}, \text{cons} \}
```

head : Stream $\rightarrow \mathbb{N}$

tail : Stream \rightarrow Stream cons : Stream \rightarrow (Stream) $^{\mathbb{N}}$

Functor G_{Δ}

$$G_{\Delta}X := \mathbb{N} \times X \times (X)^{\mathbb{N}}$$

A categorical property of cobases

Observation

 $\Delta \subseteq \Sigma_s$ is a cobasis for (Σ_s, E_s) iff \mathbb{N}^{ω} together with the operations in Δ is (isomorphic to) a subcoalgebra of the final G_{Δ} -coalgebra.

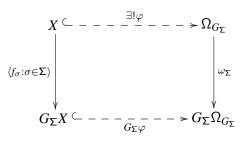
Examples

- The set {head, tail} is a cobasis:
 (N^ω, ⟨head, tail⟩) is a final N × _-coalgebra.
- The set {head, even, odd} is a cobasis:
 (N^ω, ⟨head, even, odd⟩) is isomorphic to a subcoalgebra of the final N × _ × _-coalgebra.

Complete set of operations

Definition

Let X be a set. A collection of operations $\{f_{\sigma}\}_{{\sigma}\in\Sigma}$ for some ${\mathcal S}$ -sorted signature Σ is called *complete for* X if the final map $\varphi:X\to\Omega_{G_{\Sigma}}$ is injective:



Equivalently

... if $(X, \langle f_{\sigma} : \sigma \in \Sigma \rangle)$ is isomorphic to a subcoalgbra of the final coalgebra.

More abstractly: Complete coalgebra

Definition

Let X be a set and let $G: \mathsf{Set} \to \mathsf{Set}$ be a functor. Then $\alpha: X \to GX$ is called *complete* for X if the final G-coalgebra map $\varphi: X \to \Omega_G$ satisfies $\ker(\varphi) \subseteq \Delta_X$.

$$X \subseteq ---\frac{\exists !\varphi}{-}- \Rightarrow \Omega_{G}$$

$$\downarrow^{\omega_{\Sigma}}$$

$$GX \subseteq --\frac{\neg}{G} = - \Rightarrow G\Omega_{G}$$

Equivalently

... if (X, α) is isomorphic to a subcoalgbra of the final coalgebra.

Complete sets of operations

For streams

- the examples from the beginning
- the set {head, even', odd'} where

even'
$$(a_0a_1a_2a_3a_4...)$$
 = $a_2a_4...$
even' $(a_0a_1a_2a_3a_4...)$ = $a_1a_3...$

• the set $\{\text{head}, \text{tail}^{\mathbb{N}}\}\$ where $\text{tail}^{\mathbb{N}}(a_0a_1a_2\ldots) = (1*a_1, 2*a_2, 3*a_3, \ldots).$

Other examples

- bi-infinite streams: {head, ltail, rtail}
- binary trees: {head, left, right}

Proofs & Definitions

Idea

Given a complete set of operations for a set X we obtain a proof principle and a definition principle for X.

For now

We focus on streams & stream functions and the complete set of operations $\Delta = \{\text{head}, \text{even}, \text{odd}\}.$

Proof principle

We can use complete sets Δ of operations, in order to prove things:

- using Δ -coinduction: head(σ) = head(τ), even(σ) = even(τ) and odd(σ) = odd(τ) implies $\sigma = \tau$ (e.g. show
 - $odd(\sigma) = odd(\tau)$ implies $\sigma = \tau$ (e.g. show $zip(even(\sigma), odd(\sigma)) = \sigma$).
- using Δ -bisimulations: R is a Δ -bisimulation if for all $(\sigma, \tau) \in R$ we have head (σ) = head (τ) , (even (σ) , even (τ)) $\in R$ and $(\text{odd}(\sigma), \text{odd}(\tau)) \in R$.

Definition priniciple for {head, even, odd}

Definition

Let $\mathbb{N}^{2^*} := \{t \mid t : 2^* \to \mathbb{N}\}$ be the set of infinite binary \mathbb{N} -labelled trees.

{head, even, odd} is complete:

$$\mathbb{N}^{\omega} \subseteq ----- \frac{\exists !j}{-----} = \mathbb{N}^{2^*}$$

$$\langle \text{head,even,odd} \rangle \qquad \qquad \langle h,l,r \rangle$$

$$\mathbb{N} \times \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \subseteq ----- \mathbb{N} \times \mathbb{N}^{2^*} \times \mathbb{N}^{2^*}$$

A universal property

$$P:=\{t\in\mathbb{N}^{2^*}\mid h(t)=h(l(t))\}\subseteq\mathbb{N}^{2^*}$$

Proposition

We have $(\mathbb{N}^{\omega}, \langle \text{head}, \text{even}, \text{odd} \rangle) \cong \Box P$.

Corollary

For any coalgebra $(X, \langle H, E, O \rangle)$ with

$$H(x) = H(E(x))$$
 for all $x \in X$

there is a unique coalgebra morphism $f: X \to \mathbb{N}^{\omega}$ from $(X, \langle H, E, O \rangle)$ to $(\mathbb{N}^{\omega}, \langle \text{head}, \text{even}, \text{odd} \rangle)$.

Definition scheme (preparations)

We inductively define the set \mathcal{FT} of flat equation terms and the set \mathcal{ET} of equation terms:

$$\mathcal{F}\mathcal{T} \ni s ::= x_i \mid E(x_i) \mid O(x_i)$$

 $\mathcal{E}\mathcal{T} \ni t ::= s \in \mathcal{F}\mathcal{T} \mid \underline{\tau}, \tau \in A^{\omega} \mid f(t_1, \dots, t_{r(f)}).$

Definition scheme

A *well-formed* sytem of behavioural differential equations \mathcal{E} for a set of function symbols Γ contains for every $f \in \Gamma$ three equations

$$H(f(x_1, \ldots, x_{r(f)})) := c^f(H(x_1), \ldots, H(x_{r(f)}))$$

for some function $c : \mathbb{N}^{r(f)} \to \mathbb{N}$
 $E(f(x_1, \ldots, x_{r(f)})) := t_E^f(x_1, \ldots, x_{r(f)})$
 $O(f(x_1, \ldots, x_{r(f)})) := t_O^f(x_1, \ldots, x_{r(f)})$

where t_E^f and t_O^f are equation terms with free variables contained in $\{x_1, \ldots, x_{r(f)}\}$. Furthermore we require that for all $f \in \Gamma$

$$\mathcal{E} \cup \{H(E(x_i)) = H(x_i) \mid x_i \in X\} \vdash$$

$$H(E(f(x_1, \dots, x_{r(f)}))) = H(f(x_1, \dots, x_{r(f)})).$$

Examples

Thue-Morse sequence (in 2^{ω})

 TM_n is the binary digit sum of n modulo 2

$$H(\operatorname{inv}(x)) := 1 - H(x)$$
 $H(\operatorname{TM}) := 0$
 $E(\operatorname{inv}(x)) := \operatorname{inv}(E(x))$ $E(\operatorname{TM}) := \operatorname{TM}$
 $O(\operatorname{inv}(x)) := \operatorname{inv}(O(x))$ $O(\operatorname{TM}) := \operatorname{inv}(\operatorname{TM})$

An example in \mathbb{Z}^{ω}

$$\begin{array}{llll} H(\texttt{alt}(x)) & := & H(x) & H(\texttt{m}(x)) & := & -H(x) \\ E(\texttt{alt}(x)) & := & E(x) & E(\texttt{m}(x)) & := & \texttt{m}(E(x)) \\ O(\texttt{alt}(x)) & := & \texttt{m}(O(x)) & O(\texttt{m}(x)) & := & \texttt{m}(O(x)) \end{array}$$

Hence alt $(a_0, a_1, a_2, a_3, ...) := a_0, -a_1, a_2, -a_3, ...$

Conclusions

Positive

- coalgebraic understanding of (simple) cobases
- proof principle & definition scheme that works also for structures that cannot be modelled as (final) coalgebras

Many questions...

- Find better & more examples.
- Formulate the definition scheme as general as possible.
- Exisiting work on Hidden Algebra/CoCasL