Translation from Quantitative Intentional Automata into Markov Chains

Young-Joo Moon

CWI

October 23, 2007

Contents

- Motivation
- Related work
- Reo and Intentional Automata
- Work flow
- Example
- Conclusion

Motivation I

Existing Formalisms and Tools

- Reo language
 - a channel-based glue language for coordination models
- Constraint Automata
 - operational semantics for Reo language
- Variations of Reo language and Constraint Automata
 - Quantitative Reo language
 - Quantitative Constraint Automata(QCA)

However, these formalisms do not explain quantitative aspects derived from the environment, for example,

- Throughput
- Response time

Motivation II

Markov Chains(MCs)

- Stochastic model for performance evaluation
- Memoryless property
- Continuous-time MC and Discrete-time MC

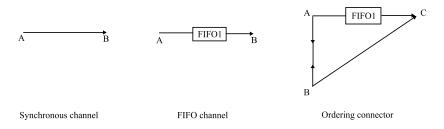
The translation from Reo language into MCs is considered in order to

- account for quantitative aspects from the environment
- implement an integrated tool for modeling functionality and performance evaluation

Related work

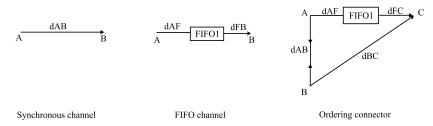
Measure Specification Language(MSL) provides

- specification of performance measures in component-oriented way
- mixed approach
 - compositional framework by Stochastic Process Algebra(SPA)
 - performance evaluation by Action-labeled Continuous Time Markov Chains(ACTMCs)

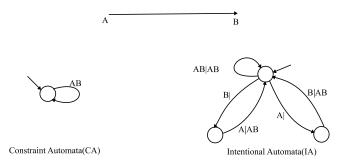

Comparison to our methodology

- compositional framework by Quantitative Reo language
- performance evaluation by derived MC
 - ⇒ The derived MC has compact state space because of the information of synchronous behavior

Reo language


- Reo language
 - a channel-based "glue language"
 - primitive channels and complex application called connectors
 - synchronousy and asynchronousy behavior
- Quantiative Reo language
 - variation of Reo language
 - compositional specification of a system behavior with the quantity (i.e., data flow delay)

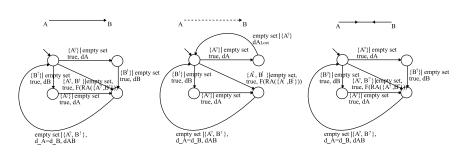
4 D > 4 A > 4 B > 4 B >


Reo language

- Reo language
 - a channel-based "glue language"
 - primitive channels and complex application called connectors
 - synchronousy and asynchronousy behavior
- Quantitative Reo language
 - variation of Reo language
 - compositional specification of a system behavior with the quantity (i.e., data flow delay)

Intentional Automata

- Intentional Automata(IA)
 - specification of a system behavior with the environment information
 - data arrivals at ports and processing between ports


Quantitative Intentional Automata(QIA)

- Concept of IA and quantity
- Separation input and output ports
- Processing delay(dAB,dAF,dFB) is given.
 - Q-algebra for delay calculation

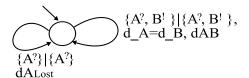
Extended QIA(EQIA)

- Representation explicit request arrivals
- Separation request arrivals and data flow processing
- Given set of request inter-arrival time

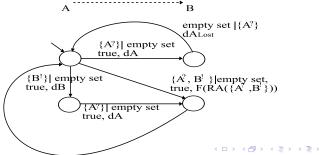
Work flow

Final Goals

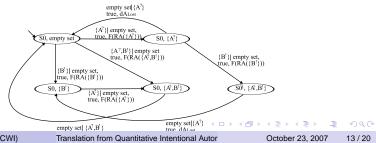
- Translation from Quantitative Reo circuit to MC
- Integrate tool implementation from specification of a system behavior to performance evaluation
- Intermediate steps
 - Quantitative Reo circuit into QIA
 - QIA into MC
- Extending existing tools and implementing its translation


- Assumptions
 - The order of processing delays can be deduced.
 - d_1 ; d_2 : d_2 follows d_1 .
 - $d_1 \parallel d_2 : d_1$ and d_2 happen in parallel.
 - The delay distribution is exponentially distributed.
 - The synchronous behaviors happen atomically.
 - Decision of which reaction is instantaneous.
- QIA transition →_{QIA}
 - request arrivals of an atomic behavior
 - single arrival in non-deterministic way
 - parallel arrivals
 - processing of an atomic behavior
- MC transition →_{MC}
 - single event
 - single request arrival at a port
 - single processing for an atomic behavior

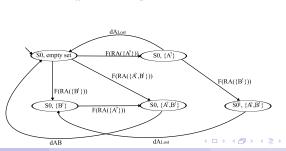
Translation

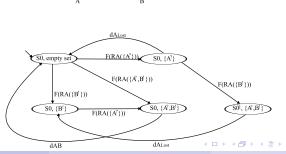

- extending QIA
- adding missing arrivals
- keeping single data arrival and single processing
- adding intermediate transitions for prallel processing
- dealing with parallel request arrivals

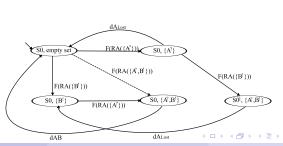
A B



- extending QIA

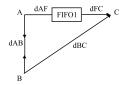

- dealing with parallel request arrivals


- extending QIA
- adding missing arrivals
- keeping single data arrival and single processing
- adding intermediate transitions for prallel processing
- dealing with parallel request arrivals

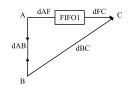

- extending QIA
- adding missing arrivals
- keeping single data arrival and single processing
- adding intermediate transitions for prallel processing
- dealing with parallel request arrivals

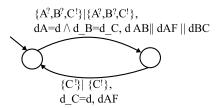
- extending QIA
- adding missing arrivals
- keeping single data arrival and single processing
- adding intermediate transitions for prallel processing
- dealing with parallel request arrivals

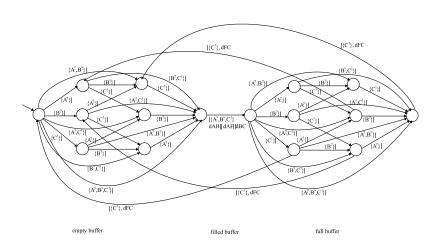
- extending QIA
- adding missing arrivals
- keeping single data arrival and single processing
- adding intermediate transitions for prallel processing
- dealing with parallel request arrivals

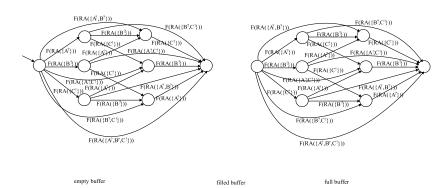


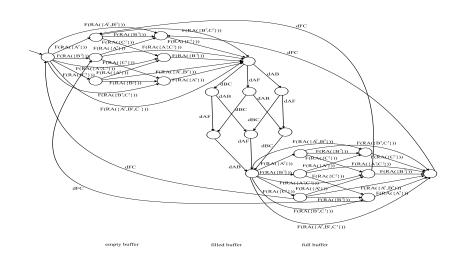
Translation for parallel processing $s_1 \xrightarrow{\emptyset, N, g, d} s_2$


- If d is a single delay, then add $s_1 \xrightarrow{d} s_2$.
- ② If $d = d_1 \parallel d_2 \parallel \cdots \parallel d_k$, then for each transition,
 - $\forall d_i, s_1 \xrightarrow{d_i} ts_i$
 - $\forall d_j, ts_i \xrightarrow{d_j} ts_{ij} \text{ where } i \neq j$
 - ..
 - $\bullet \ \forall \ d_k, \ ts_{ij\cdots l} \xrightarrow{d_k} s_2$


go back to step 1.


If $d = d_1$; d_2 ; \cdots ; d_k , then for each transition, $s_1 \xrightarrow{d_1} ts_1, ts_1 \xrightarrow{d_2} ts_2, \cdots, ts_{k-1} \xrightarrow{d_k} s_2$, go back to step 1.




- variables for configuration : A, B, C, dAB, dBC, dAF, dFC
- number of states of MC: 2⁷ = 128 states
 - port variables : ready for processing
 - delay variables : in processing

In total, 22 states

Conclusion

- Reo language provides
 - compositional specification of a system behavior
 - synchronousy information

,but can not explain the environment.

- By the translation from Reo into MC
 - accounting for the environment with quantity
 - implementing an integrated tool for modeling functionality and performance evaluation