Neighborhood semantics for deontic and agency logics

Olga Pacheco

FAST Group DI/CCTC, University of Minho

CIC'07

October, 2007

Adding Context

- Motivation
- Deontic and Agency Logics

Deontic and Agency Logics

- 3 Analysis suported
- 4 Adding Context
- 5 Future work

- In complex sytems we may not have full control over the behaviour of all its components:
 - incomplete information,
 - "black box" components,
 - it's too expensive or complex to do so,
 - humans are involved,...
- Thus, failure may occur and the system must be prepared to react to that.
- Non-ideality has to be taken as a natural ingredient, from first stages of development.
- Instead of describing how the system will behave we can only say how the system should behave:
 - it is necessary is replaced by it is obligatory,
 - it is possible is replaced by it is permitted.

- Contract-based (normative) specification :
 - specify what is the obligatory and permitted behaviour (norms),
 - assume that components may deviate from that ideal behaviour (violate norms),
 - define what to do when violations to expected behaviour occur (sanctions, recovery procedures)
- Norms: represented by the set of obligations and permissions that result from them.
- Our aim: contribute with a high-level model and a logic to reason about it.

Relevant concepts:

- We want to be able to speak about obligations and permissions.
- We are interested in: obligation (and permission) to do (as oposed to obligation to be).
- Obligations are fulfilled by agents through actions:
 "Agent x is obliged to pay the debt" meaning "It is obligatory that agent x pays the debt".
- So, we need an agency concept.
- We also need to relate obligations with actions of agents.

As failure may occur, it is important to confront *expected behavior* (obligations, permissions, ...) with *actual behaviour* (actions of agents), detect *violations* of obligations (forbidden actions or not permitted actions) and identify *agents responsible for them*.

We will use deontic and agency logics.

Deontic modal language $\mathcal{L}_D(At)$ (At set of atomic propositions)

$$\psi ::= p | \neg \psi | \psi \rightarrow \psi | O \psi$$
 $p \in At$ $\land, \lor, \leftrightarrow$ defined as usual.

$$P\psi \stackrel{\textit{def}}{=} \neg O \neg \psi.$$

$O \phi$: "it is obligatory that ϕ "

- O: states what is obligatory to do, what ought to be done.
- P: states what is permitted.

SDL-Standard Deontic Logic

Axiomatics

PC Any axiomatization of proposition logic.

(K)
$$O(\psi \rightarrow \phi) \rightarrow (O\psi \rightarrow O\phi)$$

(D)
$$O\psi \rightarrow \neg O\neg \psi$$

(MP)
$$\frac{\psi \quad \psi \rightarrow \phi}{\phi}$$

(Nec)
$$\frac{\psi}{O\psi}$$

Axiom (D) tells that "what is obligatory is permitted" or, equivalently, that "there cannot exist conflicts of obligations": (D) $\neg (O\psi \land O\neg \psi)$.

SDL is a KD normal modal logic.

SDL: Paradoxes

SDL leads to well known paradoxes :Ross paradox, Chisholm paradox, gentle murder paradox,...

Questions rised by the "paradox of gentle murder" are relevant to our context.

SDL: Paradox of gentle murder

Statements:

- (1) Jones murders Smith.
- (2) Jones ought not to murder Smith.
- (3) If Jones murders Smith, then Jones ought to murder Smith gently.

Another fact:

• (4) If Jones murders Smith gently, then Jones murders Smith.

From (4) and (RM) rule we can infer:

• (5) If Jones ought to murder Smith gently, then Jones ought to murder Smith.

Fom (1) and (3) we have:

• (6) Jones ought to murder Smith gently.

And from (5) and (6) we infer

• (7) Jones ought to murder Smith.

which contradicts (2).

SDL: Paradoxes

Monotonicity

is the main cause for this paradox. We will need *weaker logics than* K in order to avoid undesirable inferences of this kind.

Other paradoxes are related with different problems: the representation of contrary to duties or conditional obligations, for instance.

The deontic logic we use:

Axiomatics

(PC) Any axiomatization of proposition logic.

(D)
$$O\psi \rightarrow \neg O\neg \psi$$

(MP)
$$\frac{\psi \quad \psi \to \phi}{\phi}$$

(RE)
$$\frac{\psi \leftrightarrow \phi}{O\psi \leftrightarrow O\phi}$$

This is a non-normal ED modal logic.

The semantic we adopt:

Semantics: neighbourhood deontic models

A neighborhood deontic frame F is a pair $F = \langle W, N_o \rangle$ where W is a non-empty set of worlds and N_o is a neighborhood deontic function $N_o: W \longrightarrow \mathcal{P}(\mathcal{P}(W))$. A model based on F is a tuple $\langle W, N_o, V \rangle$ where V is a valuation function $V: W \longrightarrow \mathcal{P}(At)$.

 $N_o(w)$ assigns to each world the set of propositions obligatory in it. Propositions are represented by its truth set:

$$\parallel \psi \parallel_{M} = \{ w | M, w \Vdash \psi \}$$

Validity of formulas in a model:

- $M, w \Vdash p \text{ iff } p \in V(w)$
- $M, w \Vdash \neg \psi$ iff $M, w \not\Vdash \psi$
- $M, w \Vdash \psi \rightarrow \phi$ iff $M, w \not\Vdash \psi$ or $M, w \Vdash \phi$
- $M, w \Vdash O\psi$ iff $\|\psi\|_{M} \in N_o(w)$

$F \Vdash \psi$

A frame F validates a formula ψ if all models based on F validate $\psi.$

Some known results:

Properties of neighborhood deontic frames

Let $F = \langle W, N_o \rangle$ be a neighborhood deontic frame. The axiom

(D) defines a *proper frame*, i.e., $F \Vdash O\psi \rightarrow \neg O\neg \psi$ iff for all w, if

 $X \in N_o(w)$ then $(W - X) \notin N_o(w)$.

Agency Logic

Agency modal language $\mathcal{L}_A(At)$ (At set of atomic propositions)

 $\psi ::= p | \neg \psi | \psi \rightarrow \psi | \{ E_a \psi \}_{a \in Ag}$ where Ag is a set of agents and $p \in At$

 $\land, \lor, \leftrightarrow$ defined as usual.

$E_i \phi$: "agent *i* brings about ϕ "

 E_i ϕ relates the **agent** (actor, component, ...) i with the **state of affairs** ϕ he brings about, abstracting from the *concrete actions* done to obtain that *state of affairs* and putting aside temporal issues.

Agency logic

Axiomatics

PC Any axiomatization of proposition logic.

(T)
$$E_i \psi \rightarrow \psi$$

(C)
$$E_i \psi \wedge E_i \phi \rightarrow E_i (\psi \wedge \phi)$$

(MP)
$$\frac{\psi \quad \psi \rightarrow \phi}{\phi}$$

(RE)
$$\frac{\psi \leftrightarrow \phi}{E_i \psi \leftrightarrow E_i \phi}$$

This is a non-normal ETC modal logic.

Agency Logic

Outline

Semantics: neighbourhood agency models

A neighborhood agency frame F is a pair $F = \langle W, \{N_{e_i}\}_{i \in A_g} \rangle$ where W is a non-empty set of worlds and N_{e_i} is a neighborhood agency function $N_{e_i}: W \longrightarrow \mathcal{P}(\mathcal{P}(W))$. A model based on F is a tuple $\langle W, \{N_{e_i}\}_{i \in A_g}, V \rangle$ where V is a valuation function $V: W \longrightarrow \mathcal{P}(At)$.

 $N_{e_i}(w)$ assigns to the world w the set of propositions the agent i brings about in w.

Validity of formulas in a neighborhood agency model:

- $M, w \Vdash p \text{ iff } p \in V(w)$
- $M, w \Vdash \neg \psi$ iff $M, w \not\Vdash \psi$
- $M, w \Vdash \psi \rightarrow \phi$ iff $M, w \not\models \psi$ or $M, w \vdash \phi$
- $M, w \Vdash E_i \psi$ iff $\|\psi\|_{M} \in N_{e_i}(w)$

Agency Logic

Some known results:

Properties of neighborhood agency frames

Let $F = \langle W, N_{e_i} \rangle$ be a neighborhood agency frame.

- $F \Vdash E_i \psi \wedge E_i \phi \rightarrow E_i (\psi \wedge \phi)$ iff F is closed under finite intersections (i.e., if for any collection of sets $\{X_i\}_{i \in I}$ (I finite), for each $i \in I$, $X_i \in N_{e_i}(w)$, then $(\bigcap_{i \in I} X_i) \in N_{e_i}(w)$.
- $F \Vdash E_i \psi \to \psi$ iff for each $w \in W$, $N_{e_i}(w) \neq \emptyset$ and $w \in \bigcap N_{e_i}(w)$

Deontic and Agency Logic

Deontic and agency modal language $\mathcal{L}_{DA}(At)$ (At set of atomic propositions)

 $\psi ::= p |\neg \psi| \psi \to \psi |O\psi| \{E_a \psi\}_{a \in Ag} \quad \text{where Ag is a set of agents and } p \in At$

 $\land, \lor, \leftrightarrow$ defined as usual, P defined as above.

Outline

Logical properties:

PC Any axiomatization of proposition logic.

(MP)
$$\frac{\psi \quad \psi \rightarrow \phi}{\phi}$$

(Te)
$$E_i \psi \rightarrow \neg \psi$$

(Ce)
$$E_i \psi \wedge E_i \phi \rightarrow E_i (\psi \wedge \phi)$$

(REe)
$$\frac{\psi \leftrightarrow \phi}{E_i \psi \leftrightarrow E_i \phi}$$

(Do)
$$O\psi \rightarrow \neg O\neg \psi$$

(REo)
$$\frac{\psi \leftrightarrow \phi}{O\psi \leftrightarrow O\phi}$$

(Coe)
$$OE_i\psi \wedge OE_i\phi \rightarrow OE_i(\psi \wedge \phi)$$

(Cop)
$$OE_i\psi \wedge PE_i\phi \rightarrow PE_i(\psi \wedge \phi)$$

(RMep)
$$\frac{E_i\psi \to E_k\phi}{PE_i\psi \to PE_k\phi}$$

Deontic and Agency Logic

Neighborhood deontic and agency models:

 $M = \langle W, N_o, \{N_{e_i}\}_{i \in Ag}, V \rangle$ where:

- $N_o: W \longrightarrow \mathcal{P}(\mathcal{P}(W))$
- $\bullet \ \mathsf{N}_{\mathsf{e}_i}: W \longrightarrow \mathcal{P}(\mathcal{P}(W))$
- $V: W \longrightarrow \mathcal{P}(At)$

Deontic and Agency Logic

We can reformulate a neighborhood function as follows:

 $f_{\square}: \mathcal{P}(W) \longrightarrow \mathcal{P}(W)$ $w \in f_{\square}(X) \text{ iff } X \in N_{\square}(w)$

 $f_{\square}(X)$ gives the set of worlds where X is necessary.

Thus:

- $f_{e_i}(X)$ gives the set of worlds where the agent i brings about (the proposition) X.
- f_o(X) gives the set of worlds where (the proposition) X is obligatory.

Now we have: $\|\Box\psi\| = f_{\Box}(\|\psi\|)$ which facilitates the expression of the semantics of iterated modal operators (as composition of neighborhood functions).

Outline

- $\bullet \parallel \top \parallel = W$
- $\|\bot\| = \emptyset$
- $\bullet \parallel \neg \psi \parallel = W \parallel \psi \parallel$
- $\bullet \parallel \psi \land \phi \parallel = \parallel \psi \parallel \cap \parallel \phi \parallel$
- $\bullet \parallel \psi \lor \phi \parallel = \parallel \psi \parallel \cup \parallel \phi \parallel$
- $\bullet \parallel \psi \to \phi \parallel = \parallel \psi \parallel \subseteq \parallel \phi \parallel$
- $\bullet \parallel E_i \psi \parallel = f_{e_i} (\parallel \psi \parallel)$
- $\bullet \parallel O\psi \parallel = f_o(\parallel \psi \parallel)$

Outline

Using this function, the semantic characterization of formulas is "closest" to the syntactic form of formulas.

Logical Formulas vs. Semantic Properties:

Te
$$f_{ei}(X) \subseteq X$$

Ce
$$f_{ei}(X) \cap f_{ei}(Y) \subseteq f_{ei}(X \cap Y)$$

Do
$$f_o(X) \cap f_o(W-X) = \emptyset$$

Coe
$$f_o(f_{ei}(X)) \cap f_o(f_{ei}(Y)) \subseteq f_o(f_{ei}(X \cap Y))$$

Cop
$$(f_o(f_{ei}(X)) - f_o(W - f_{ei}(Y))) \cap f_o(W - f_{ei}(X \cap Y)) = \emptyset$$

RMep if
$$f_{ei}(X) \subseteq f_{ek}(Y)$$
 then

$$f_o(W - f_{ek}(Y)) \subseteq f_o(W - f_{ei}(X))$$

Analysis supported

Expressivity

- $OE_i\psi$ (obligatory actions)
- $PE_i\psi$ (permitted actions)
- $E_i E_k \psi$ (control)
- $E_i O E_k \psi$ (command)
- $E_i P E_k \psi$ (authorisation)
- · · ·

We will restrict our attention here to the first two formula schemas.

Personal deontic operators

- $O_i \phi \stackrel{abv}{=} OE_i \phi$
- $P_i \phi \stackrel{abv}{=} P E_i \phi$

Analysis supported

- Verify if an action is permitted: $E_i \psi \wedge P_i \psi$
- Detect norm violations:
 - $O_i\psi \wedge E_i \neg \psi$
 - $\neg P_i \psi \wedge E_i \psi$
- Detect the fulfillment of some obligation: $O_i \psi \wedge E_i \psi$
- Recovery or sanctioning of agents involved (effects of actions):
 - $(O_i \psi \wedge E_i \neg \psi) \rightarrow O_i \phi$
 - $(O_i \psi \wedge E_i \neg \psi) \rightarrow \neg P_i \phi$
- Other effects:
 - representation: $E_i \psi \to E_k \psi$
 - conventional acts (count as): $E_i \psi \to E_i \phi$

Adding Context

Effects of an action depend on action context

- The same action done by the same agent may have different effects depending on the context where the action was done.
- Roles may capture context of action.
- ullet Permissions and obligations depend on roles. An agent may have permission to do ψ when acting in a role and not have permission to do the same action when acting in a different role.

Adding Context

Effects of an action depend on action context

- The same action done by the same agent may have different effects depending on the context where the action was done.
- Roles may capture context of action.
- ullet Permissions and obligations depend on roles. An agent may have permission to do ψ when acting in a role and not have permission to do the same action when acting in a different role.
- Action in a role: $E_{i:r}\psi$: "agent i playing role r brings about ψ ".
- Distinction between roles and agents.

- $O_{i\cdot r}\psi \stackrel{\mathsf{abv}}{=} OE_{i\cdot r}\psi$
- $P_{i\cdot r}\psi \stackrel{abv}{=} PE_{i\cdot r}\psi$
- $P_{i:r1}\psi \wedge \neg P_{i:r2}\psi$ or (contradictory permissions)
- $O_{i:r1}\psi \wedge O_{i:r2}\neg \psi$ (conflicting obligations)

Questions

- What about dynamics?
- Effects of actions are not instantaneous.
- What is the meaning of worlds and neighborhoods in specification?
- How to combine the logics?
- ...

Future work

- Add dynamics.
- Explore the fact that a neighborhood frame is a coalgebra for the contravariant powerset functor composed with itself 2².
 (c.f. work of Y. Venema, H. Hansen, C. Kupke, E. Pacuit)

Bibliography

- H. Arlo-Costa and E. Pacuit. First-order classical modal logic. Studia Logica 84, pp. 171-210, 2006.
- J. Carmo and O. Pacheco. Deontic and action logics for organized collective agency, modeled through institutionalized agents and roles. Fundamenta Informaticae, Vol.48 (No. 2,3), pp. 129-163, IOS Press, November, 2001.
- B. J. Chellas. Modal Logic an Introduction, Cambridge University Press, 1980.
- H. Hansen. Monotonic modal logic (Master's thesis). Research Report PP-2003-24, ILLC, University of Amsterdam, 2003.
- O. Pacheco and J. Carmo: "A Role Based Model for the Normative Specification of Organized Collective Agency and Agents Interaction", Journal of Autonomous Agents and Multi-Agent Systems, Vol. 6, Issue 2, pp.145-184, Kluwer, 2003.