Regular expressions are a syntactic means to describe exactly the class of languages accepted by deterministic finite state automata, i.e. the class of regular languages. Ignoring the initial state for the moment, a deterministic automata is a set of states equipped with function determining for each state whether or not it is final, and assigning for each input symbol a next state.

There is a well-known correspondence between regular expressions and deterministic automata. For instance the automata

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\end{array}
\begin{array}{c}
\text{a} \\
\text{b} \\
\end{array}
\]

accepts the same language as described by the expression \(b^*a(a + bb^*a)^* \). There are methods to obtain a regular expression that accepts the same language as a given automaton and vice-versa.

Deterministic automata can be generalized to coalgebras for an endo-functor \(G \) on the category \(\text{Set} \). A coalgebra is pair \((S, g) \) consisting of a set of states \(S \) and a transition function \(g : S \rightarrow GS \), where the functor \(G \) determines the type of the dynamic system under consideration.

For polynomial set functors \(G \), we generalize the notion of regular expressions and introduce a language of expressions for describing elements of the final \(G \)-coalgebra. We show that every state of a finite \(G \)-coalgebra corresponds to an expression in the language, in the sense that they both have the same semantics. Conversely, we give a compositional synthesis algorithm which transforms every expression into a finite \(G \)-coalgebra. The language of expressions is equipped with an equational system that is sound, complete and expressive with respect to \(G \)-bisimulation.