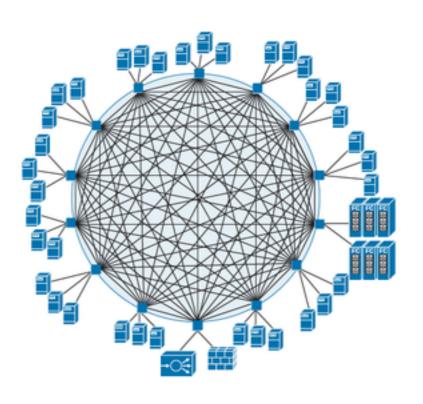
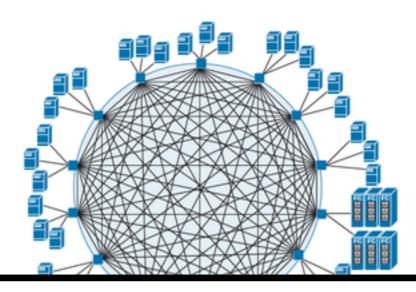
Probabilistic Program Equivalence for NetKAT

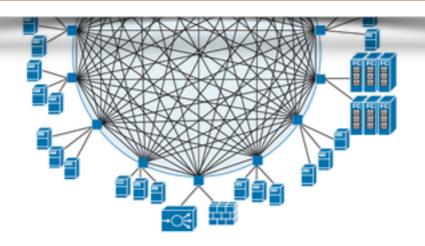
Steffen Smolka, Praveen Kumar, Nate Foster, Justin Hsu, David Khan, Dexter Kozen (Cornell U), **Alexandra Silva (UCL)**



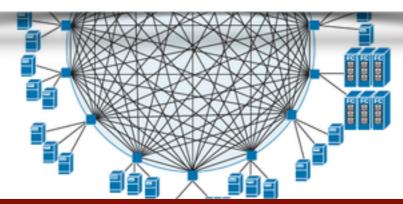


- built and programmed the same way since the 1970s
- low-level, special-purpose devices implemented on custom hardware
- routers and switches that do little besides maintaining routing tables and forwarding packets
- configured locally using proprietary interfaces

Network configuration largely a black art

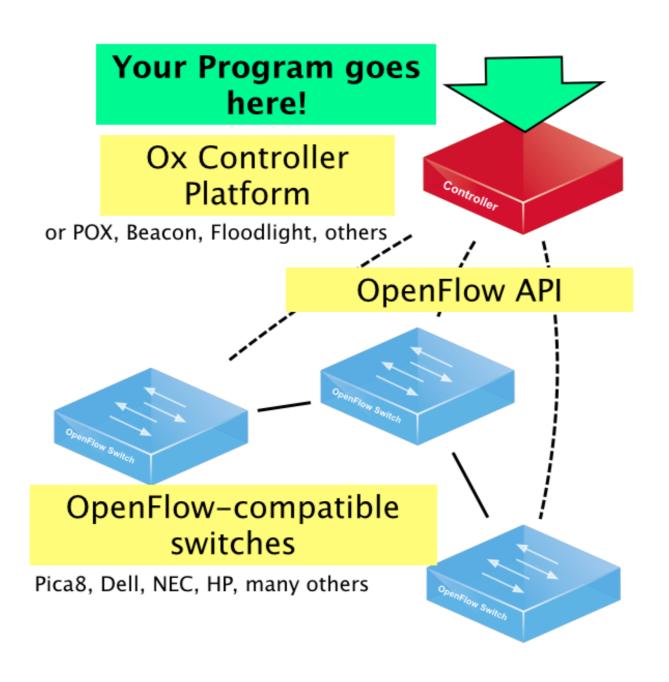


Network configuration largely a black art



- ✓ Difficult to implement end-to-end routing policies and optimisations that require a global perspective
- ✓ Difficult to extend with new functionality
- Effectively impossible to reason precisely about behaviour

Software-Defined Networks



Openflow

[McKeown & al., SIGCOMM 08]

- Specifies capabilities and behaviour of switch hardware
- A language for manipulating network configurations
- Very low-level: easy for hardware to implement, di cult for humans to write and reason about

But...

- √ is platform independent
- ✓ provides an open standard that any vendor can implement

Verification of networks

Trend in PL&Verification after Software-Defined Networks

- Design high-level languages that model essential network features
- Develop semantics that enables reasoning precisely about behaviour
- Build tools to synthesise low-level implementations automatically

- Frenetic [Foster & al., ICFP 11]
- Pyretic [Monsanto & al., NSDI 13]
- Maple [Voellmy & al., SIGCOMM 13]
- FlowLog [Nelson & al., NSDI 14]
- Header Space Analysis [Kazemian & al., NSDI 12]
- VeriFlow [Khurshid & al., NSDI 13]
- NetKAT [Anderson & al., POPL 14]
- and many others . . .

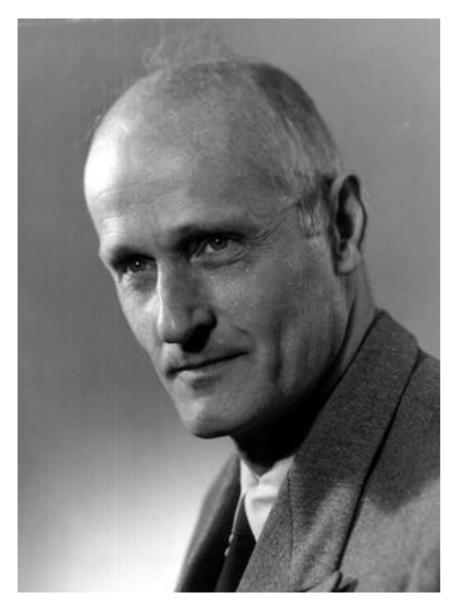
NetKAT

_

Kleene algebra with tests (KAT)

+

additional specialized constructs particular to network topology and packet switching



Stephen Cole Kleene (1909–1994)

$$(0+1(01*0)*1)*$$
{multiples of 3 in binary}
$$(ab)*a = a(ba)*$$
{a, aba, ababa, ...}
$$\xrightarrow{b}$$

 $(a+b)^* = a^*(ba^*)^*$

 $\rightarrow a + b$

{all strings over $\{a, b\}$ }

$$(K, B, +, \cdot, *, -, 0, 1), B \subseteq K$$

- \blacktriangleright $(K, +, \cdot, *, 0, 1)$ is a Kleene algebra
- \triangleright $(B, +, \cdot, ^-, 0, 1)$ is a Boolean algebra
- ▶ $(B, +, \cdot, 0, 1)$ is a subalgebra of $(K, +, \cdot, 0, 1)$
- \triangleright p, q, r, ... range over K
- \triangleright a, b, c, ... range over B

$$(K, B, +, \cdot, *, -, 0, 1), B \subseteq K$$

- $(K, +, \cdot, *, 0, 1)$ is a Kleene algebra
- \triangleright $(B, +, \cdot, ^-, 0, 1)$ is a Boolean algebra
- \triangleright (B, +, ·) KAT = simple imperative language
- \triangleright p, q, r, ...
- ► a, b, c, .

If b then p else
$$q = b;p + !b;q$$

While b do p = $(bp)^*!b$

Deductive Completeness and Complexity

- deductively complete over language, relational, and trace models
- subsumes propositional Hoare logic (PHL)
- deductively complete for all relationally valid Hoare-style rules

$$\frac{\{b_1\} p_1 \{c_1\}, \ldots, \{b_n\} p_n \{c_n\}}{\{b\} p \{c\}}$$

decidable in PSPACE

Applications

- protocol verification
- static analysis and abstract interpretation
- verification of compiler optimizations

- ightharpoonup a packet π is an assignment of constant values n to fields x
- ▶ a packet history is a nonempty sequence of packets $\pi_1 :: \pi_2 :: \cdots :: \pi_k$
- ▶ the head packet is π_1

NetKAT

- ▶ assignments $x \leftarrow n$ assign constant value n to field x in the head packet
- ▶ tests x = n if value of field x in the head packet is n, then pass, else drop
- dup duplicate the head packet

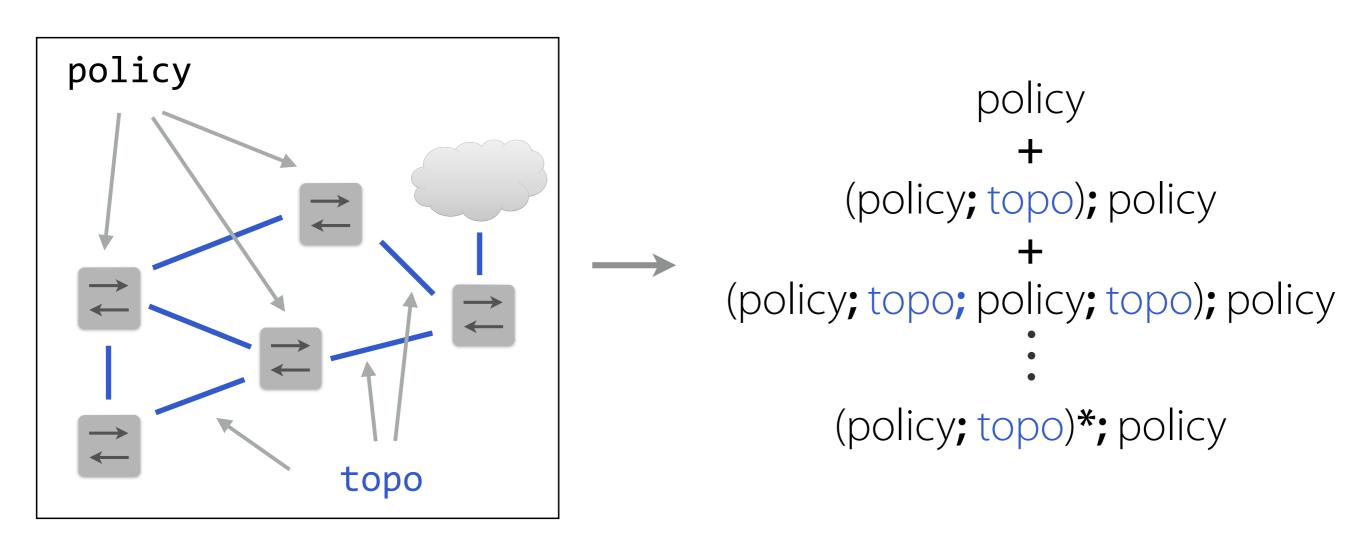
Networks in NetKAT

sw=6;pt=8;dst := 10.0.1.5;pt:=5

For all packets located at port 8 of switch 6, set the destination address to 10.0.1.5 and forward it out on port 5.

Networks in NetKAT

The behaviour of an entire network can be encoded in NetKAT by interleaving steps of processions by switches and topology



```
packet history set of packet histories < > > > > < > (policy;topo)*;policy <math>>
```

$$\llbracket e \rrbracket \colon H \to 2^H$$

packet history set of packet histories $\{<q,...>,< r,...>\}$

$$\llbracket e \rrbracket \colon H \to 2^H$$

$$\llbracket x \leftarrow n \rrbracket (\pi_1 :: \sigma) \stackrel{\triangle}{=} \{ \pi_1 [n/x] :: \sigma \}$$

$$\llbracket x = n \rrbracket (\pi_1 :: \sigma) \stackrel{\triangle}{=} \begin{cases} \{ \pi_1 :: \sigma \} & \text{if } \pi_1(x) = n \\ \varnothing & \text{if } \pi_1(x) \neq n \end{cases}$$

$$\llbracket \text{dup} \rrbracket (\pi_1 :: \sigma) \stackrel{\triangle}{=} \{ \pi_1 :: \pi_1 :: \sigma \}$$

Verification using NetKAT

Reachability

► Can host A communicate with host B? Can every host communicate with every other host?

Security

▶ Does all untrusted traffic pass through the intrusion detection system located at C?

Loop detection

Is it possible for a packet to be forwarded around a cycle in the network?

Verification using NetKAT

Soundness and Completeness [Anderson et al. 14]

▶ $\vdash p = q$ if and only if $\llbracket p \rrbracket = \llbracket q \rrbracket$

Decision Procedure [Foster et al. 15]

- NetKAT coalgebra
- efficient bisimulation-based decision procedure
- implementation in OCaml
- deployed in the Frenetic suite of network management tools

Limitations

$$\llbracket e \rrbracket \colon H \to 2^H$$

- *Packet-processing function
- *Applicability limited to simple connectivity or routing behavior

Limitations

$$\llbracket e \rrbracket \colon H \to 2^H$$

- *Packet-processing function
- *Applicability limited to simple connectivity or routing behavior

Probabilities are needed

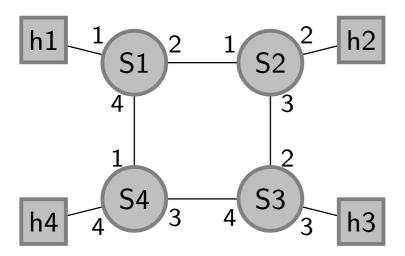
- * expected congestion
- * reliability
- * randomized routing

ProbNetKAT

$$p \oplus_r q$$

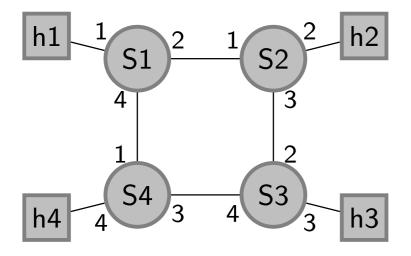
ProbNetKAT

$$p \oplus_r q$$

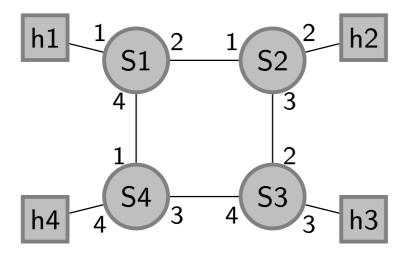


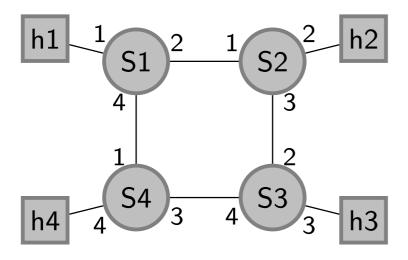
ProbNetKAT

$$p \oplus_r q$$

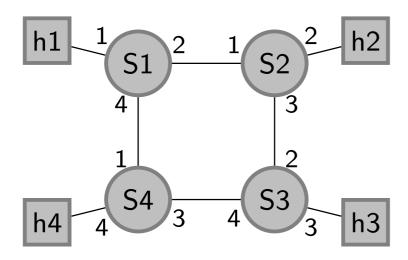


$$dst = h_3; pt \leftarrow 2 \oplus_{.5} pt \leftarrow 4$$





```
p_1 \triangleq (\mathsf{dst} = h_1 \; ; \; \mathsf{pt} \leftarrow 1)
 & (\mathsf{dst} = h_2 \; ; \; \mathsf{pt} \leftarrow 2)
 & (\mathsf{dst} = h_3 \; ; \; (\mathsf{pt} \leftarrow 2 \oplus \mathsf{pt} \leftarrow 4))
 & (\mathsf{dst} = h_4 \; ; \; \mathsf{pt} \leftarrow 4)
```

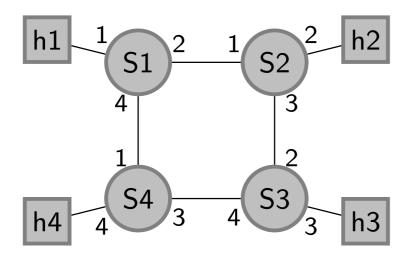


$$p_1 \triangleq (\mathsf{dst} = h_1 \; ; \, \mathsf{pt} \leftarrow 1)$$

& $(\mathsf{dst} = h_2 \; ; \, \mathsf{pt} \leftarrow 2)$
& $(\mathsf{dst} = h_3 \; ; \, (\mathsf{pt} \leftarrow 2 \oplus \mathsf{pt} \leftarrow 4))$
& $(\mathsf{dst} = h_4 \; ; \, \mathsf{pt} \leftarrow 4)$

Forwarding policy

$$p \triangleq (sw = S_1; p_1) \& (sw = S_2; p_2) \& (sw = S_3; p_3) \& (sw = S_4; p_4)$$

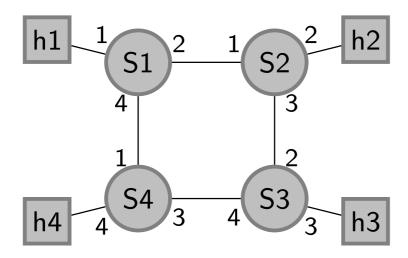


$$l_{1,2} \triangleq (sw=S_1; pt=2; dup; sw \leftarrow S_2; pt \leftarrow 1; dup)$$

& $(sw=S_2; pt=1; dup; sw \leftarrow S_1; pt \leftarrow 2; dup)$

Forwarding policy

$$p \triangleq (sw = S_1; p_1) \& (sw = S_2; p_2) \& (sw = S_3; p_3) \& (sw = S_4; p_4)$$



$$l_{1,2} \triangleq (\mathsf{sw} = S_1 ; \mathsf{pt} = 2 ; \mathsf{dup} ; \mathsf{sw} \leftarrow S_2 ; \mathsf{pt} \leftarrow 1 ; \mathsf{dup})$$

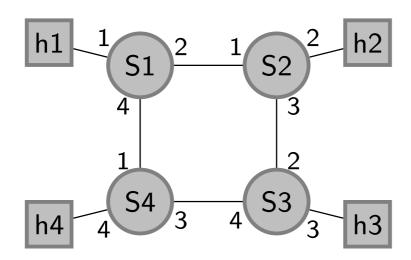
& $(\mathsf{sw} = S_2 ; \mathsf{pt} = 1 ; \mathsf{dup} ; \mathsf{sw} \leftarrow S_1 ; \mathsf{pt} \leftarrow 2 ; \mathsf{dup})$

Forwarding policy

$$p \triangleq (sw = S_1; p_1) \& (sw = S_2; p_2) \& (sw = S_3; p_3) \& (sw = S_4; p_4)$$

Topology

$$t \triangleq l_{1,2} \& l_{2,3} \& l_{3,4} \& l_{1,4}$$



Ingress - egress

$$in \triangleq (sw=1; pt=1) \& (sw=2; pt=2) \& ...$$

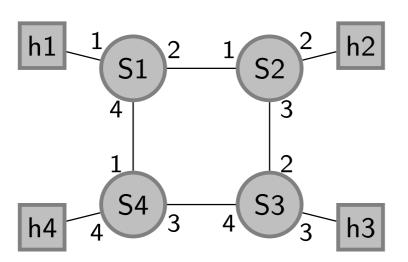
 $out \triangleq (sw=1; pt=1) \& (sw=2; pt=2) \& ...$

Forwarding policy

$$p \triangleq (sw = S_1; p_1) \& (sw = S_2; p_2) \& (sw = S_3; p_3) \& (sw = S_4; p_4)$$

Topology

$$t \triangleq l_{1,2} \& l_{2,3} \& l_{3,4} \& l_{1,4}$$



$$net \triangleq in ; (p;t)^* ; p ; out$$

Ingress - egress

$$in \triangleq (sw=1; pt=1) \& (sw=2; pt=2) \& ...$$

 $out \triangleq (sw=1; pt=1) \& (sw=2; pt=2) \& ...$

Forwarding policy

$$p \triangleq (sw = S_1; p_1) \& (sw = S_2; p_2) \& (sw = S_3; p_3) \& (sw = S_4; p_4)$$

Topology

$$t \triangleq l_{1,2} \& l_{2,3} \& l_{3,4} \& l_{1,4}$$

```
\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}
```

 ${\cal B}$ Borel sets of $2^{\sf H}$ using Cantor topology

$$\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}$$

 \mathcal{B} Borel sets of 2^{H} using Cantor topology

$$\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}$$

 ${\cal B}$ Borel sets of $2^{\sf H}$ using Cantor topology

 $\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}$

 ${\cal B}$ Borel sets of $2^{\rm H}$ using Cantor topology

$$\llbracket p^* \rrbracket = ?$$

$$\llbracket p^* \rrbracket = ?$$

Ideally: $\llbracket p^* \rrbracket = \llbracket 1 \& pp^* \rrbracket$

least fix point? which order?

$$\llbracket p^* \rrbracket = ?$$

Ideally: $\llbracket p^* \rrbracket = \llbracket 1 \& pp^* \rrbracket$

least fix point? which order?

Ad-hoc attempt: infinite stochastic process

ProbNetKAT model p, input distribution µ

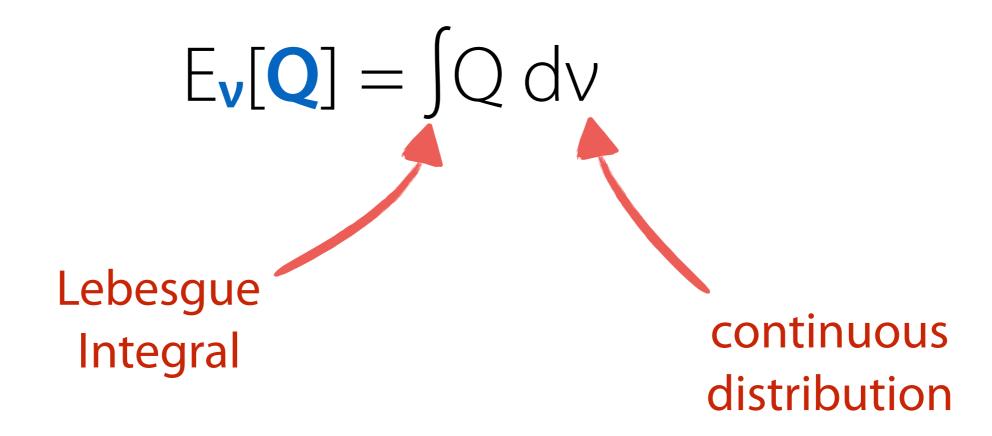
 \rightarrow output distribution $\mathbf{v} = \mu \gg [\![\mathbf{p}]\!] \in \text{Dist}(2^{H})$

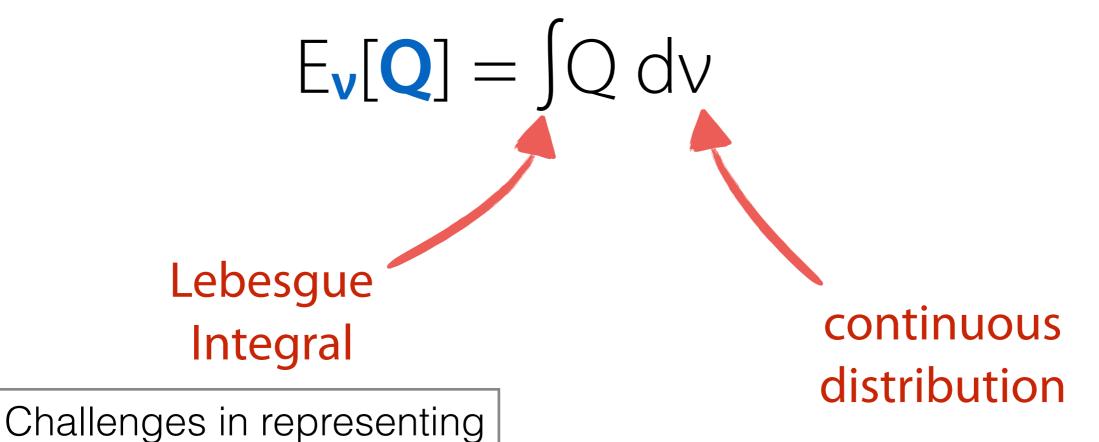
Congestion Query: Random Variable $\mathbb{Q}: 2^{H} \rightarrow [0,\infty]$

$$Q(a) \triangleq \sum_{h \in a} \#_l(h)$$

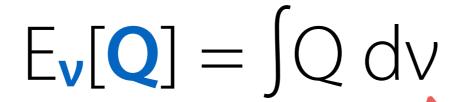
Expected Congestion: $E_{\mathbf{v}}[\mathbf{Q}]$

$$\mathbf{E}[Q] = \int Q \, d\nu$$





infinite distributions

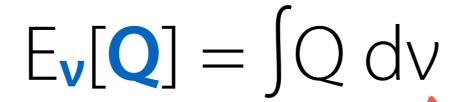


Iteration — infinite stochastic process instead of standard fixpoint

Lebesgue Integral

Challenges in representing infinite distributions

continuous distribution



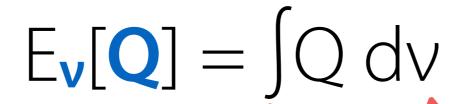
Iteration — infinite stochastic process instead of standard fixpoint

Lebesgue Integral

weak convergence non-monotonic

continuous distribution

Challenges in representing infinite distributions



Iteration — infinite stochastic process instead of standard fixpoint

Lebesgue Integral

weak convergence non-monotonic

continuous distribution

Challenges in representing infinite distributions

many queries not continuous Cantor topology — no weak convergence!

No practical implementation?

Iteration — infinite stochastic process instead of standard fixpoint

Lebesgue Integral

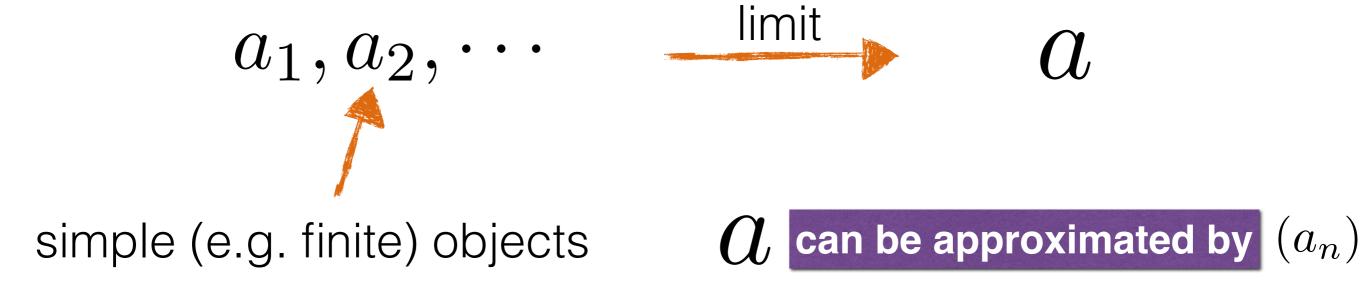
weak convergence non-monotonic

continuous distribution

Challenges in representing infinite distributions

many queries not continuous Cantor topology — no weak convergence!

simple (e.g. finite) objects



Perform computation f on a f continuous

simple (e.g. finite) objects

 $oldsymbol{Q}$ can be approximated by $oldsymbol{(a_n)}$

Perform computation f on a f continuous

$$f(a_1), f(a_2), \cdots$$
 limit $f(a)$

The importance of continuity for network analysis

$$\mu_1, \mu_2, \cdots$$
 μ finite support!

The importance of continuity for network analysis

$$\mu_1, \mu_2, \cdots$$
 μ_n finite support!

 $\mathbf{E}_{\mu}[f]$ — expected value of a continuous map is continuous

monotonically improving sequence of approximations for performance metrics such as latency and congestion

New semantics

 $\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}$

 ${\cal B}$ Borel sets of using Scott topology

$$[\![p^*]\!] = \mathsf{Ifp} \ X \mapsto 1 \& [\![p]\!]; X$$

New semantics

$$\llbracket p \rrbracket \in 2^{\mathsf{H}} \to \{\mu : \mathcal{B} \to [0,1] \mid \mu \text{ is a probability measure} \}$$

 ${\cal B}$ Borel sets of using Scott topology

$$[\![p^*]\!] = \mathsf{Ifp} \ X \mapsto 1 \& [\![p]\!]; X$$

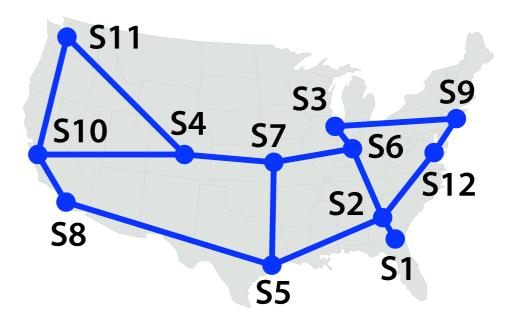
Finite distributions and star free approximations

Implementation and Case studies

Interpreter in OCaml

Approximates the answer monotonically

Several case studies



Internet2's Abilene backbone network

Routing

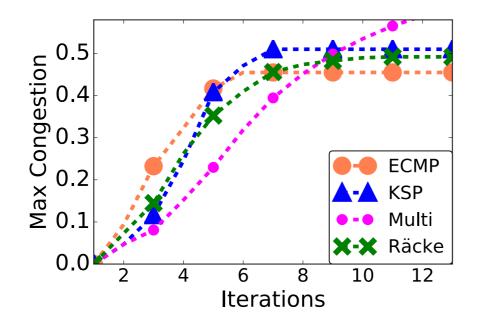
Equal Cost Multipath Routing (ECMP)

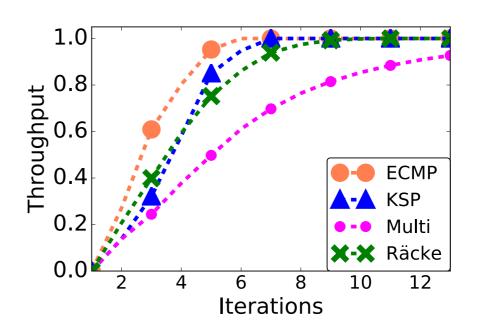
k-Shortest Paths (KSP)

Multipath Routing (Multi)

Oblivious Routing (Raecke)

Analysed properties





(c) Max congestion

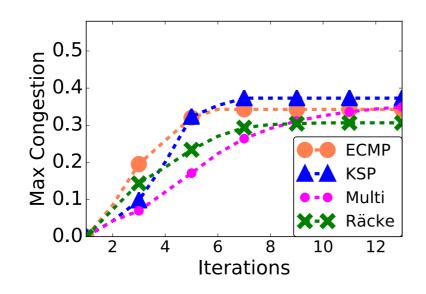
(d) Throughput

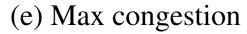
Values converge monotonically

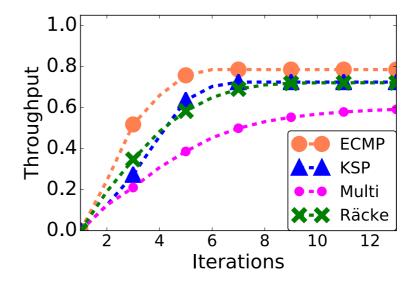
Analysed properties

Failures

```
\ell_{1,2} \triangleq \text{sw} = S_1 \; ; \text{pt} = 2 \; ; \text{dup} \; ; \; ((\text{sw} \leftarrow S_2 \; ; \text{pt} \leftarrow 1 \; ; \text{dup}) \oplus_{0.9} 0) \\ \& \; \text{sw} = S_2 \; ; \text{pt} = 1 \; ; \text{dup} \; ; \; ((\text{sw} \leftarrow S_1 \; ; \text{pt} \leftarrow 2 \; ; \text{dup}) \oplus_{0.9} 0)
```







(f) Throughput

Decision procedure

- History-free programs.
- Iteration operator modelled as absorbing Markov chain
- Closed-form solution for its semantics

Theorem 5.7 (Closed Form). Let $a, b, b' \subseteq Pk$. Then

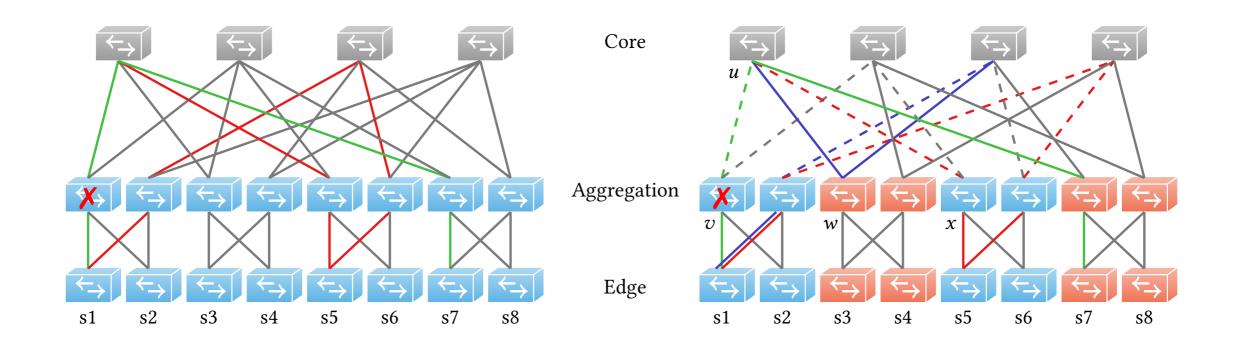
$$\lim_{n \to \infty} \sum_{a'} S_{(a,b),(a',b')}^n = (SU)_{(a,b),(\varnothing,b')}^{\infty}$$
(4)

or, using matrix notation,

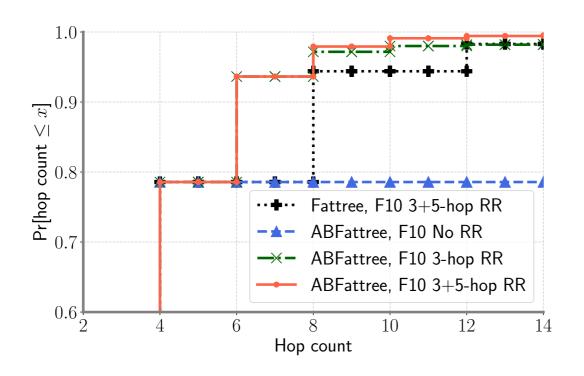
$$\lim_{n \to \infty} \sum_{a'} S_{(-,-),(a',-)}^n = \begin{bmatrix} I_n \\ (I-Q)^{-1}R \end{bmatrix} \in [0,1]^{(2^{Pk} \times 2^{Pk}) \times 2^{Pk}}$$
 (5)

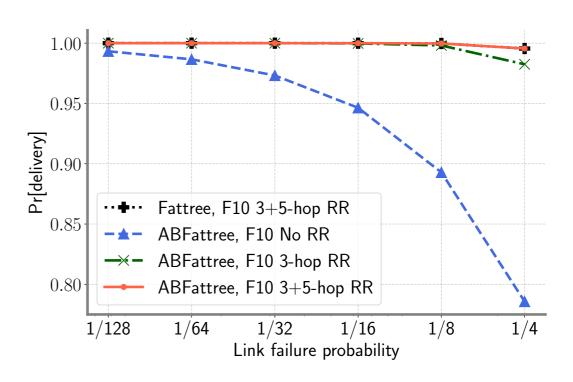
In particular, the limit in (4) exists and its analytical value is computable.

Case study



Analysis





Conclusions

First language-based framework for specifying and verifying **probabilistic network behavior**.

Order theoretic semantics

Practical implementation

Analysis of several randomised routing protocols on real-world data

Future work

Axiomatizations

Full decision procedure

Automata — PRISM

Weighted NetKAT

Compiler

Other probabilistic languages

Questions?

