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Context
• Probabilistic automata: randomized computation, 

semantics of programming languages, machine learning. 


• Non-deterministic automata: concurrent and distributed 
systems


• Rabin 80’s: use of nondeterminism and probabilities 
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Sparsity also plays a role in the Gram-Schmidt procedure because, in our
context, the argument vector u often shares non-zeros with only a few base
vectors. We have implemented an optimised version of Gram-Schmidt that only
projects out base vectors that share non-zero positions with the argument. This
can lead to dramatic speed-ups in the deterministic algorithms (the randomised
algorithm does not use Gram-Schmidt).

3.1 Herman’s Protocol

We consider Herman’s self-stabilization protocol [11], in which N processes are
arranged in a ring. Initially each process holds a token. The objective of Herman’s
protocol is to evolve the processes into a stable state, where only one process
holds a token. The algorithm proceeds in rounds: in every round, each process
holding a token tosses a coin to decide whether to keep the token or to pass it
to its left neighbour; if a process holding a token receives an additional token,
both of these tokens expire. We will be interested in the number of rounds that
it takes to reach the stable state. The corresponding apex model “announces”
each new round by making calls to an undefined (external) procedure round
inside the control loop of the protocol. Making the announcements at different
program points within the loop (e.g. at the very beginning or the very end)
results in different automata shown in Figure 4 (for N = 3).

A few remarks are due regarding our graphical representation of automata.
Initial states are marked by a grey background. Accepting states are surrounded
by a double border and labelled by a distribution over return values, e.g., the
automaton on the left returns value 0 with a probability of 3

4 .
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Fig. 4. Herman’s protocol: automata for early (left) and late (right) announcement

These automata are structurally different and not bisimilar. However, intu-
itively, it should not matter at which position within the loop the announcement
is made and therefore we check if the resulting automata are equivalent. Here is
how the four algorithms perform in this case study.

states equivalence checking
N sspec sprot t←,rand t←,det t→,rand t→,det
9 23 24 0.00 0.00 0.00 0.00

11 63 64 0.00 0.09 0.05 0.13
13 190 191 0.15 2.66 1.19 3.60
15 612 613 3.98 93.00 30.32 119.21



Non-deterministic 
probabilistic automata

As an example, consider the NPA below.
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States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{�} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di↵erent P
c

D-algebras on [0, 1] leading to
di↵erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on [0, 1] extending E : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
PcE��! P

c

[0, 1]
↵�! [0, 1], where ↵ is a P

c

-algebra.
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Language semantics via 
powerset construction

Classic construction

Turn the non-deterministic automaton into a deterministic one
via the powerset construction and then apply usual semantics.
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ō(U) =
_

U

o(u)



Powerset construction
S

<o,t>����! 2⇥ P(S)A

P(S)
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JSL and P are closely related in a very general way

P is a monadJSL are the algebras for the P monad

We will used monads and algebras  
to define a generalised powerset construction and have  
a general language semantics for a class of automata 
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• Monads as effectful computation  (Moggi 80’s)


• Effects : non-determinism, probabilities, input-output, …

T : Set ! Set

⌘ : S ! T S

µ : T T S ! T S

P(S) = {U | U ✓ S}

⌘(s) = {s}

µ(�) =
[

U2�

U

µ, ⌘ satisfy some reasonable laws e.g. µ � ⌘ = id
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Monads and their algebras

• Associated with each monad there is a category of (free) 
algebras

Definition 4. An algebra for a monad (T, ⌘, µ) is a pair (X,h) consisting of

a carrier set X and a function h : TX ! X making the following diagrams

commute.

X TX

X

⌘

h

TTX TX

TX X

Th

µ

h

h

Definition 5. A homomorphism from an algebra (X,h) to an algebra (Y, k) for

a monad T is a function f : X ! Y making the diagram below commute.

TX TY

X Y

Tf

h k

f

The algebras for the finite powerset monad are precisely the join-semilattices
with bottom, and their homomorphisms are maps that preserve finite joins. The
algebras for any monad together with their homomorphisms form a category.

2.3 Distribution and Convex Powerset Monads

We will work with two monads closely associated with convex sets. In the category
of sets, the distribution monad (D, �,m) maps a set X to the set of distributions
over X with finite support. The unit � : X ! DX maps x 2 X to the point
distribution at x. For the multiplication m : DDX ! DX, let d 2 DDX be a
finite distribution with support {d1, . . . , dn} ✓ DX and define m(d) =

P
n

i=1 pidi,
where p

i

is the probability of producing d
i

under d. The category of algebras
for the distribution monad is precisely the category of convex sets and a�ne
maps—we will often convert between these two representations implicitly.

In the category of convex sets, the finitely generated nonempty convex powerset

monad [8] (P
c

, {�},
S
) maps a convex set A to the set of finitely generated

nonempty convex subsets of A.4 The convex algebra structure on P
c

A is given byP
n

i=1 piUi

= {
P

n

i=1 piui

| u
i

2 U
i

for all 1  i  n} with every U
i

2 P
c

A. The
unit map {�} : A ! P

c

A maps a 2 A to a singleton convex set {a}, and the
multiplication

S
: P

c

P
c

A ! P
c

A is again the union operation, which collapses
nested convex sets.

As an example, we can consider this monad on the convex algebra [0, 1]. The
result is a finitely generated convex set.

Lemma 1. The convex set P
c

[0, 1] is generated by its elements {0}, {1}, and
[0, 1], i.e., Conv({{0}, {1}, [0, 1]}) = P

c

[0, 1].
4 In prior work [8], the monad was defined to take all convex subsets rather than
just the finitely generated ones. However, since all the monad operations preserve
finiteness of the generators, the restricted monad we consider is also well-defined.

4
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Deterministic Probabilistic 
automata

As an example, we recover deterministic probabilistic automata (DPAs) by
taking T to be the distribution monad D and letting the output set be the
interval [0, 1]. That is, a DPA with finite5 state space S has an output function
of type S ! [0, 1], and each of its transition functions is of type S ! DS. To
give a semantics to such an automaton, we use the usual D-algebra structure
E : D[0, 1] ! [0, 1] computing the expected weight.

More concretely, the semantics works as follows. Let (S, s0, �, {⌧a}a2A

) be
a DPA. At any time while reading a word, we are in a convex combination of
states

P
n

i=1 pisi (equivalently, a distribution over states). The current output
is given by evaluating the sum

P
n

i=1 pi�(si). On reading a symbol a 2 A, we
transition to the convex combination of convex combinations

P
n

i=1 pi⌧a(si),
say

P
n

i=1 pi
P

mi

j=1 qi,jsi,j , which is collapsed to the final convex combinationP
n

i=1

P
mi

j=1 piqi,jsi,j (again, a distribution over states).

Remark 1. One may wonder if the automaton model would be more expressive
if the initial state s0 in an automaton (S, s0, �, {⌧a}a2A

) would be an element of
TS rather than S. This is not the case, since we can always add a new element
to S that simulates s0 by setting its output to (o � T�)(s0) and its transition on
a 2 A to (µ � T ⌧

a

)(s0).
For instance, DPAs allowing a distribution over states as the initial state

can be represented by an initial state distribution µ, an output vector �, and
transitions ⌧

a

. In typical presentations, µ and � are represented as weight vectors
over states, and the ⌧

a

are encoded by stochastic matrices.

3 Nondeterministic Probabilistic Automata

We work with an automaton model supporting probabilistic and nondeterministic
behaviors, inspired by Segala [26]. On each input letter, the automaton can
choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad P

c

D.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a (finite)

alphabet A is defined by a tuple (S, s0, �, {⌧a}a2A

), where S is a finite set of

states, s0 2 S is the initial state, � : S ! [0, 1] is the output function, and
⌧
a

: S ! P
c

DS are the transition functions indexed by inputs a 2 A.

5 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.

7

ō(s) = ↵ � (T o)(s)

↵ =

S
<o,t>����! [0, 1]⇥D(S)A

D(S)
<ō,t̄>����! [0, 1]⇥D(S)A
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ō(s) = ↵ � (T o)(s)

[0,1] is a convex algebra↵ =

S
<o,t>����! [0, 1]⇥D(S)A

D(S)
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behaviors, inspired by Segala [26]. On each input letter, the automaton can
choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad P

c

D.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a (finite)

alphabet A is defined by a tuple (S, s0, �, {⌧a}a2A

), where S is a finite set of

states, s0 2 S is the initial state, � : S ! [0, 1] is the output function, and
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DS are the transition functions indexed by inputs a 2 A.

5 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.
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Definition 4. An algebra for a monad (T, ⌘, µ) is a pair (X,h) consisting of

a carrier set X and a function h : TX ! X making the following diagrams

commute.

X TX

X

⌘

h

TTX TX

TX X

Th

µ

h

h

Definition 5. A homomorphism from an algebra (X,h) to an algebra (Y, k) for

a monad T is a function f : X ! Y making the diagram below commute.

TX TY

X Y

Tf

h k

f

The algebras for the finite powerset monad are precisely the join-semilattices
with bottom, and their homomorphisms are maps that preserve finite joins. The
algebras for any monad together with their homomorphisms form a category.

2.3 Distribution and Convex Powerset Monads

We will work with two monads closely associated with convex sets. In the category
of sets, the distribution monad (D, �,m) maps a set X to the set of distributions
over X with finite support. The unit � : X ! DX maps x 2 X to the point
distribution at x. For the multiplication m : DDX ! DX, let d 2 DDX be a
finite distribution with support {d1, . . . , dn} ✓ DX and define m(d) =

P
n

i=1 pidi,
where p

i

is the probability of producing d
i

under d. The category of algebras
for the distribution monad is precisely the category of convex sets and a�ne
maps—we will often convert between these two representations implicitly.

In the category of convex sets, the finitely generated nonempty convex powerset

monad [8] (P
c

, {�},
S
) maps a convex set A to the set of finitely generated

nonempty convex subsets of A.4 The convex algebra structure on P
c

A is given byP
n

i=1 piUi

= {
P

n

i=1 piui

| u
i

2 U
i

for all 1  i  n} with every U
i

2 P
c

A. The
unit map {�} : A ! P

c

A maps a 2 A to a singleton convex set {a}, and the
multiplication

S
: P

c

P
c

A ! P
c

A is again the union operation, which collapses
nested convex sets.

As an example, we can consider this monad on the convex algebra [0, 1]. The
result is a finitely generated convex set.

Lemma 1. The convex set P
c

[0, 1] is generated by its elements {0}, {1}, and
[0, 1], i.e., Conv({{0}, {1}, [0, 1]}) = P

c

[0, 1].
4 In prior work [8], the monad was defined to take all convex subsets rather than
just the finitely generated ones. However, since all the monad operations preserve
finiteness of the generators, the restricted monad we consider is also well-defined.
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As an example, we recover deterministic probabilistic automata (DPAs) by
taking T to be the distribution monad D and letting the output set be the
interval [0, 1]. That is, a DPA with finite5 state space S has an output function
of type S ! [0, 1], and each of its transition functions is of type S ! DS. To
give a semantics to such an automaton, we use the usual D-algebra structure
E : D[0, 1] ! [0, 1] computing the expected weight.

More concretely, the semantics works as follows. Let (S, s0, �, {⌧a}a2A

) be
a DPA. At any time while reading a word, we are in a convex combination of
states

P
n

i=1 pisi (equivalently, a distribution over states). The current output
is given by evaluating the sum

P
n

i=1 pi�(si). On reading a symbol a 2 A, we
transition to the convex combination of convex combinations

P
n

i=1 pi⌧a(si),
say

P
n

i=1 pi
P
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j=1 qi,jsi,j , which is collapsed to the final convex combinationP
n

i=1

P
mi

j=1 piqi,jsi,j (again, a distribution over states).

Remark 1. One may wonder if the automaton model would be more expressive
if the initial state s0 in an automaton (S, s0, �, {⌧a}a2A

) would be an element of
TS rather than S. This is not the case, since we can always add a new element
to S that simulates s0 by setting its output to (o � T�)(s0) and its transition on
a 2 A to (µ � T ⌧

a

)(s0).
For instance, DPAs allowing a distribution over states as the initial state

can be represented by an initial state distribution µ, an output vector �, and
transitions ⌧

a

. In typical presentations, µ and � are represented as weight vectors
over states, and the ⌧

a

are encoded by stochastic matrices.

3 Nondeterministic Probabilistic Automata

We work with an automaton model supporting probabilistic and nondeterministic
behaviors, inspired by Segala [26]. On each input letter, the automaton can
choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad P

c

D.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a (finite)

alphabet A is defined by a tuple (S, s0, �, {⌧a}a2A

), where S is a finite set of

states, s0 2 S is the initial state, � : S ! [0, 1] is the output function, and
⌧
a

: S ! P
c

DS are the transition functions indexed by inputs a 2 A.

5 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.
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As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

b
s2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{�} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di↵erent P
c

D-algebras on [0, 1] leading to
di↵erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on [0, 1] extending E : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
PcE��! P

c

[0, 1]
↵�! [0, 1], where ↵ is a P

c

-algebra.
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Classic construction

Turn the non-deterministic automaton into a deterministic one
via the powerset construction and then apply usual semantics.
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can be represented by an initial state distribution µ, an output vector �, and
transitions ⌧

a

. In typical presentations, µ and � are represented as weight vectors
over states, and the ⌧

a

are encoded by stochastic matrices.

3 Nondeterministic Probabilistic Automata

We work with an automaton model supporting probabilistic and nondeterministic
behaviors, inspired by Segala [26]. On each input letter, the automaton can
choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad P

c

D.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a (finite)

alphabet A is defined by a tuple (S, s0, �, {⌧a}a2A

), where S is a finite set of

states, s0 2 S is the initial state, � : S ! [0, 1] is the output function, and
⌧
a

: S ! P
c

DS are the transition functions indexed by inputs a 2 A.

5 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.
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Classic construction

Turn the non-deterministic automaton into a deterministic one
via the powerset construction and then apply usual semantics.
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States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{�} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di↵erent P
c

D-algebras on [0, 1] leading to
di↵erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on [0, 1] extending E : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
PcE��! P

c

[0, 1]
↵�! [0, 1], where ↵ is a P

c

-algebra.
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alphabet A is defined by a tuple (S, s0, �, {⌧a}a2A

), where S is a finite set of

states, s0 2 S is the initial state, � : S ! [0, 1] is the output function, and
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DS are the transition functions indexed by inputs a 2 A.
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As an example, consider the NPA below.
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States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{�} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di↵erent P
c

D-algebras on [0, 1] leading to
di↵erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on [0, 1] extending E : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
PcE��! P

c

[0, 1]
↵�! [0, 1], where ↵ is a P

c

-algebra.
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Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
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D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
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with formally defining this semantics, based on the general framework from
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state. We only indicate a set of generators of the convex subset that a state
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Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
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transition function maps each state to a singleton distribution over states. Thus,
we require the P
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Proof. Let o: PcD[0, 1] ! [0, 1] be aPcD-algebra extendingE. We deÞne

! = Pc[0, 1] P c !""! PcD[0, 1] o"! [0, 1].

Indeed, the diagram

PcD[0, 1] Pc[0, 1]

PcPcD[0, 1] PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

PcD[0, 1] [0, 1]

P c E

P c { ! } (4) P c !1

P c !

P c o

P c D o

P c "2

3 o

!

o

1 naturality of " 2 # is a convex algebra 3 o is a PcD-algebra

commutes, so it only remains to show that! is a Pc-algebra. This can be seen
from the commutative diagrams below.

[0, 1]

D[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

!

{ ! }
2

{ ! }
P c !

1

o

1 naturality of { " }
2 o is a PcD-algebra

PcPc[0, 1] PcPcD[0, 1] Pc[0, 1]

PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

P c P c !

P c P c !

!

P c o

P c !2
3

P c !

P c D o

P c "

4 o
!

P c !

1

o

1 naturality of
!

3 naturality of "
2 # is a convex algebra 4 o is a PcD-algebra #$

Proposition 2. The only Pc-algebras on the convex set[0, 1] are min and max.

9

We now show that min is an algebra; the case formax is analogous. We have

min

!
n"

i =1

r i [pi , qi ]

#

= min

!$
n"

i =1

r i ápi ,
n"

i =1

r i áqi

%#

=
n"

i =1

r i ápi

=
n"

i =1

r i ámin([pi , qi ]),

so min is an a! ne map. Furthermore, clearly min({ r } ) = r for all r ! [0, 1], and
for all S ! PcPc[0, 1],

min
&'

S
(

= min({ min(T) | T ! S} ) = ( min " Pcmin)(S). #$

Corollary 1. The only PcD-algebras on[0, 1] extending E are PcD[0, 1] P c E%%&

Pc[0, 1] min%%& [0, 1] and PcD[0, 1] P c E%%& Pc[0, 1] max%%& [0, 1].

Consider again the NPA (3). Since we can always choose to remain in the
initial state, the max semantics assigns 1 to each word for this automaton. The
min semantics is more interesting. Consider reading the wordaa. On the Þrst
a, we transition from s0 to Conv{ s0, 1

2 s1 + 1
2 s2} ! PcDS. Reading the seconda

gives

Conv
)

Conv
)

s0, 1
2 s1 + 1

2 s2
*

, 1
2 { s1} + 1

2

)
1
2 s1 + 1

2 s2
**

! PcDPcDS.

Now we Þrst apply Pc! to eliminate the outer distribution, arriving at

Conv
)

Conv
)

s0, 1
2 s1 + 1

2 s2
*

,
)

3
4 s1 + 1

4 s2
**

! PcPcDS.

Taking the union yields

Conv
)

s0, 1
2 s1 + 1

2 s2, 3
4 s1 + 1

4 s2
*

! PcDS,

which leads to the convex subset of distributions over outputs

Conv
)

1, 1
2 á0 + 1

2 á1, 3
4 á0 + 1

4 á1
*

! PcD[0, 1].

Calculating the expected weights givesConv{ 1, 1
2 , 1

4 } ! Pc[0, 1], which has a
minimum of 1

4 . One can show that on reading any wordu ! A! the automaton
outputs 2" n , where n is the length of the longest sequence ofaÕs occurring inu.

The semantics coming frommax and min are highly symmetrical; in a sense,
they are two representations of the same semantics.6 Technically, we establish
the following relation between the two semanticsÑthis will be useful to avoid
repeating proofs twice for each property.
6 The max semantics is perhaps preferable since it recovers standard nondeterministic

Þnite automata when there is no probabilistic choice and the output weights are in
{ 0, 1} , but this is a minor point.
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As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

b
s2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{ ! } E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di! erent P
c

D-algebras on [0, 1] leading to
di! erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on[0, 1] extendingE : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
P c E��! P

c

[0, 1]
!�! [0, 1], where↵ is a P

c

-algebra.
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Proof. Let o: PcD[0, 1] ! [0, 1] be aPcD-algebra extendingE. We deÞne

! = Pc[0, 1] P c !""! PcD[0, 1] o"! [0, 1].

Indeed, the diagram

PcD[0, 1] Pc[0, 1]

PcPcD[0, 1] PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

PcD[0, 1] [0, 1]

P c E

P c { ! } (4) P c !1

P c !

P c o

P c D o

P c "2

3 o

!

o

1 naturality of " 2 # is a convex algebra 3 o is a PcD-algebra

commutes, so it only remains to show that! is a Pc-algebra. This can be seen
from the commutative diagrams below.

[0, 1]

D[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

!

{ ! }
2

{ ! }
P c !

1

o

1 naturality of { " }
2 o is a PcD-algebra

PcPc[0, 1] PcPcD[0, 1] Pc[0, 1]

PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

P c P c !

P c P c !

!

P c o

P c !2
3

P c !

P c D o

P c "

4 o
!

P c !

1

o

1 naturality of
!

3 naturality of "
2 # is a convex algebra 4 o is a PcD-algebra #$

Proposition 2. The only Pc-algebras on the convex set[0, 1] are min and max.
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We now show that min is an algebra; the case formax is analogous. We have

min

!
n"

i =1

r i [pi , qi ]

#

= min

!$
n"

i =1

r i ápi ,
n"

i =1

r i áqi

%#

=
n"

i =1

r i ápi

=
n"

i =1

r i ámin([pi , qi ]),

so min is an a! ne map. Furthermore, clearly min({ r } ) = r for all r ! [0, 1], and
for all S ! PcPc[0, 1],

min
&'

S
(

= min({ min(T) | T ! S} ) = ( min " Pcmin)(S). #$

Corollary 1. The only PcD-algebras on[0, 1] extending E are PcD[0, 1] P c E%%&

Pc[0, 1] min%%& [0, 1] and PcD[0, 1] P c E%%& Pc[0, 1] max%%& [0, 1].

Consider again the NPA (3). Since we can always choose to remain in the
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)

Conv
)
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2 s2
*

, 1
2 { s1} + 1

2

)
1
2 s1 + 1

2 s2
**

! PcDPcDS.
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)
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)
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)
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Proof: 
  Basic convex algebra facts 

Proof. Let ! : Pc[0, 1] ! [0, 1] be aPc-algebra. Then for anyr " [0, 1], ! ({ r } ) = r ,
and the diagram below must commute.

PcPc[0, 1] Pc[0, 1]

Pc[0, 1] [0, 1]

P c !

!
!

!

(5)

Furthermore, ! is an a! ne map. SinceConv({{ 0} , { 1} , [0, 1]} ) = Pc[0, 1] by
Lemma 2, ! ({ 0} ) = 0, and ! ({ 1} ) = 1, ! is completely determined by! ([0, 1]).
We now calculate that

! ([0, 1]) = !
! "

{ [0, p] | p " [0, 1]}
#

= ( ! #
"

# Conv)( {{ 0} , [0, 1]} )

= ( ! # Pc! # Conv)( {{ 0} , [0, 1]} ) (5)

= ( ! # Conv# P! )( {{ 0} , [0, 1]} ) (Lemma 1)

= ( ! # Conv)( { ! ({ 0} ), ! ([0, 1])} ) (deÞnition of P! )

= ( ! # Conv)( { 0, ! ([0, 1])} )

= ! ([0, ! ([0, 1])])

= ! (! ([0, 1])[0, 1] + (1 $ ! ([0, 1])){ 0} )

= ! ([0, 1]) á! ([0, 1]) + (1 $ ! ([0, 1])) á! ({ 0} ) ( ! is a! ne)

= ! ([0, 1])2 + (1 $ ! ([0, 1])) á0

= ! ([0, 1])2.

Thus, we have either! ([0, 1]) = 0 or ! ([0, 1]) = 1. Consider any Þnitely generated
nonempty convex subset [p, q] % [0, 1]. If ! ([0, 1]) = 0, then Lemma 2 gives

! ([p, q]) = ! (p{ 1} + ( q $ p)[0, 1] + (1 $ q){ 0} )

= p á! ({ 1} ) + ( q $ p) á! ([0, 1]) + (1 $ q) á! ({ 0} )

= p á1 + ( q $ p) á0 + (1 $ q) á0 = p = min([p, q]);

if ! ([0, 1]) = 1, then

! ([p, q]) = ! (p{ 1} + ( q $ p)[0, 1] + (1 $ q){ 0} )

= p á! ({ 1} ) + ( q $ p) á! ([0, 1]) + (1 $ q) á! ({ 0} )

= p á1 + ( q $ p) á1 + (1 $ q) á0 = q = max([p, q]).

10

Proof. Let ! : Pc[0, 1] ! [0, 1] be aPc-algebra. Then for anyr 2 [0, 1], ! ({ r } ) = r ,
and the diagram below must commute.

PcPc[0, 1] Pc[0, 1]

Pc[0, 1] [0, 1]

P c !

!
!

!

(5)

Furthermore, ! is an a! ne map. SinceConv({{ 0} , { 1} , [0, 1]} ) = Pc[0, 1] by
Lemma 2, ! ({ 0} ) = 0, and ! ({ 1} ) = 1, ! is completely determined by! ([0, 1]).
We now calculate that

! ([0, 1]) = !
! "

{ [0, p] | p 2 [0, 1]}
#

= ( ! �
"

� Conv)( {{ 0} , [0, 1]} )

= ( ! � Pc! � Conv)( {{ 0} , [0, 1]} ) (5)

= ( ! � Conv� P! )( {{ 0} , [0, 1]} ) (Lemma 1)

= ( ! � Conv)( { ! ({ 0} ), ! ([0, 1])} ) (deÞnition of P! )

= ( ! � Conv)( { 0, ! ([0, 1])} )

= ! ([0, ! ([0, 1])])

= ! (! ([0, 1])[0, 1] + (1 � ! ([0, 1])){ 0} )

= ! ([0, 1]) á! ([0, 1]) + (1 � ! ([0, 1])) á! ({ 0} ) ( ! is a! ne)

= ! ([0, 1])2 + (1 � ! ([0, 1])) á0

= ! ([0, 1])2.

Thus, we have either! ([0, 1]) = 0 or ! ([0, 1]) = 1. Consider any Þnitely generated
nonempty convex subset [p, q] ✓ [0, 1]. If ! ([0, 1]) = 0, then Lemma 2 gives

! ([p, q]) = ! (p{ 1} + ( q� p)[0, 1] + (1 � q){ 0} )

= p á! ({ 1} ) + ( q� p) á! ([0, 1]) + (1 � q) á! ({ 0} )

= p á1 + ( q� p) á0 + (1 � q) á0 = p = min([p, q]);

if ! ([0, 1]) = 1, then

! ([p, q]) = ! (p{ 1} + ( q� p)[0, 1] + (1 � q){ 0} )

= p á! ({ 1} ) + ( q� p) á! ([0, 1]) + (1 � q) á! ({ 0} )

= p á1 + ( q� p) á1 + (1 � q) á0 = q = max([p, q]).

10

Proof. Let ↵ : Pc[0, 1] ! [0, 1] be aPc-algebra. Then for anyr " [0, 1], ↵({ r } ) = r ,
and the diagram below must commute.
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We now calculate that

↵([0, 1]) = ↵
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#
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"

# Conv)( {{ 0} , [0, 1]} )

= ( ↵ # Pc↵ # Conv)( {{ 0} , [0, 1]} ) (5)

= ( ↵ # Conv# P↵)( {{ 0} , [0, 1]} ) (Lemma 1)
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As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

b
s2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{ ! } E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di! erent P
c

D-algebras on [0, 1] leading to
di! erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on[0, 1] extendingE : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
P c E��! P

c

[0, 1]
!�! [0, 1], where↵ is a P

c

-algebra.
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Proof. Let o: PcD[0, 1] ! [0, 1] be aPcD-algebra extendingE. We deÞne
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commutes, so it only remains to show that! is a Pc-algebra. This can be seen
from the commutative diagrams below.
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Proposition 2. The only Pc-algebras on the convex set[0, 1] are min and max.
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We now show that min is an algebra; the case formax is analogous. We have

min

!
n"

i =1

r i [pi , qi ]

#

= min

!$
n"

i =1

r i ápi ,
n"

i =1

r i áqi

%#

=
n"

i =1

r i ápi

=
n"

i =1

r i ámin([pi , qi ]),

so min is an a! ne map. Furthermore, clearly min({ r } ) = r for all r ! [0, 1], and
for all S ! PcPc[0, 1],

min
&'

S
(

= min({ min(T) | T ! S} ) = ( min " Pcmin)(S). #$

Corollary 1. The only PcD-algebras on[0, 1] extending E are PcD[0, 1] P c E%%&

Pc[0, 1] min%%& [0, 1] and PcD[0, 1] P c E%%& Pc[0, 1] max%%& [0, 1].

Consider again the NPA (3). Since we can always choose to remain in the
initial state, the max semantics assigns 1 to each word for this automaton. The
min semantics is more interesting. Consider reading the wordaa. On the Þrst
a, we transition from s0 to Conv{ s0, 1

2 s1 + 1
2 s2} ! PcDS. Reading the seconda

gives

Conv
)

Conv
)

s0, 1
2 s1 + 1

2 s2
*

, 1
2 { s1} + 1

2

)
1
2 s1 + 1

2 s2
**

! PcDPcDS.

Now we Þrst apply Pc! to eliminate the outer distribution, arriving at

Conv
)

Conv
)

s0, 1
2 s1 + 1

2 s2
*

,
)

3
4 s1 + 1

4 s2
**

! PcPcDS.

Taking the union yields

Conv
)

s0, 1
2 s1 + 1

2 s2, 3
4 s1 + 1

4 s2
*

! PcDS,

which leads to the convex subset of distributions over outputs

Conv
)

1, 1
2 á0 + 1

2 á1, 3
4 á0 + 1

4 á1
*

! PcD[0, 1].

Calculating the expected weights givesConv{ 1, 1
2 , 1

4 } ! Pc[0, 1], which has a
minimum of 1

4 . One can show that on reading any wordu ! A! the automaton
outputs 2" n , where n is the length of the longest sequence ofaÕs occurring inu.

The semantics coming frommax and min are highly symmetrical; in a sense,
they are two representations of the same semantics.6 Technically, we establish
the following relation between the two semanticsÑthis will be useful to avoid
repeating proofs twice for each property.
6 The max semantics is perhaps preferable since it recovers standard nondeterministic

Þnite automata when there is no probabilistic choice and the output weights are in
{ 0, 1} , but this is a minor point.
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This formally explains why  
in the literature min and max are  

the only functions used 

Proof: 
  Basic convex algebra facts 

Proof. Let ! : Pc[0, 1] ! [0, 1] be aPc-algebra. Then for anyr " [0, 1], ! ({ r } ) = r ,
and the diagram below must commute.

PcPc[0, 1] Pc[0, 1]

Pc[0, 1] [0, 1]

P c !

!
!

!

(5)

Furthermore, ! is an a! ne map. SinceConv({{ 0} , { 1} , [0, 1]} ) = Pc[0, 1] by
Lemma 2, ! ({ 0} ) = 0, and ! ({ 1} ) = 1, ! is completely determined by! ([0, 1]).
We now calculate that

! ([0, 1]) = !
! "

{ [0, p] | p " [0, 1]}
#

= ( ! #
"

# Conv)( {{ 0} , [0, 1]} )

= ( ! # Pc! # Conv)( {{ 0} , [0, 1]} ) (5)

= ( ! # Conv# P! )( {{ 0} , [0, 1]} ) (Lemma 1)

= ( ! # Conv)( { ! ({ 0} ), ! ([0, 1])} ) (deÞnition of P! )

= ( ! # Conv)( { 0, ! ([0, 1])} )

= ! ([0, ! ([0, 1])])

= ! (! ([0, 1])[0, 1] + (1 $ ! ([0, 1])){ 0} )

= ! ([0, 1]) á! ([0, 1]) + (1 $ ! ([0, 1])) á! ({ 0} ) ( ! is a! ne)

= ! ([0, 1])2 + (1 $ ! ([0, 1])) á0

= ! ([0, 1])2.

Thus, we have either! ([0, 1]) = 0 or ! ([0, 1]) = 1. Consider any Þnitely generated
nonempty convex subset [p, q] % [0, 1]. If ! ([0, 1]) = 0, then Lemma 2 gives

! ([p, q]) = ! (p{ 1} + ( q $ p)[0, 1] + (1 $ q){ 0} )

= p á! ({ 1} ) + ( q $ p) á! ([0, 1]) + (1 $ q) á! ({ 0} )

= p á1 + ( q $ p) á0 + (1 $ q) á0 = p = min([p, q]);

if ! ([0, 1]) = 1, then

! ([p, q]) = ! (p{ 1} + ( q $ p)[0, 1] + (1 $ q){ 0} )

= p á! ({ 1} ) + ( q $ p) á! ([0, 1]) + (1 $ q) á! ({ 0} )

= p á1 + ( q $ p) á1 + (1 $ q) á0 = q = max([p, q]).
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min      or      max



Summary, so far
S ! [0, 1]⇥ PcD(S)A

generalised powerset construction

PcD(S) ! [0, 1] " PcD(S)A

min and max are the only  
algebras 

Deterministic automaton 
Language semantics as 

usual using min/max to combine set of output results



Next

• Non-determinism brings a lot of trouble… is it necessary?


• Given two NPAs can we decide whether they are 
equivalent?



Is non-determinism really 
important? 

As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

b
s2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from �) while outgoing
edges represent transitions. Additionally, we write the state name next to each
state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Section 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of P
c

D.
To be able to use the semantics from Section 2.4, we need to specify a P

c

D-algebra
structure o : P

c

D[0, 1] ! [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the P

c

D-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

P
c

D[0, 1] [0, 1]

{�} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many di↵erent P
c

D-algebras on [0, 1] leading to
di↵erent language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a P

c

-algebra on [0, 1], and (ii) there
are exactly two P

c

-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any P
c

D-algebra on [0, 1] extending E : D[0, 1] ! [0, 1] is of the

form P
c

D[0, 1]
PcE��! P

c

[0, 1]
↵�! [0, 1], where ↵ is a P

c

-algebra.
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4 Expressive Power of NPAs

Our convex language semantics for NPAs coincides with the standard semantics
for DPAs when all convex sets in the transition functions are singleton sets. In
this section, we show that NPAs are in fact strictly more expressive than DPAs.
We give two results. First, we exhibit a concrete language over a binary alphabet
that is recognizable by a NPA, but not recognizable by any DPA. This argument
uses elementary facts about the Hankel matrix, and actually shows that NPAs
are strictly more expressive than weighted Þnite automata (WFAs).

Next, we separate NPAs and DPAs over a unary alphabet. This argument is
substantially more technical, relying on deeper results from number theory about
linear recurrence sequences.

4.1 Separating NPAs and DPAs: Binary Alphabet

Consider the languageL a : { a, b} ! ! [0, 1] by L a(u) = 2 " n , wheren is the length
of the longest sequence ofaÕs occurring inu. Recall that this language is accepted
by the NPA ( 3) using the min algebra.

Theorem 1. NPAs are more expressive than DPAs. SpeciÞcally, there is no
DPA, or even WFA, accepting L a.

Proof. Assume there exists a WFA acceptingL a, and let l (u) for u " { a, b} ! be
the language of the linear combination of states reached after reading the word
u. We will show that the languagesl(an b) for n " N are linearly independent.
Since the function that assigns to each linear combination of states its accepted
language is a linear map, this implies that the set of linear combinations of states
of the WFA is a vector space of inÞnite dimension, and hence the WFA cannot
exist.

The proof is by induction on a natural number m. Assume that for all natural
numbers i # m the languagesl(ai b) are linearly independent. For all i # m we
have l(ai b)(am ) = 2 " m and l(ai b)(am +1 ) = 2 " m " 1; however, l (am +1 b)(am ) =
l(am +1 b)(am +1 ) = 2 " m " 1. If l (am +1 b) is a linear combination of the languages
l(ai b) for i # m, then there are constantsc1, . . . , cm " R such that in particular

(c1 + á á á+ cm )2" m = 2 " m " 1 and (c1 + á á á+ cm )2" m " 1 = 2 " m " 1.

These equations cannot be satisÞed. Therefore, for all natural numbersi # m + 1
the languagesl(ai b) are linearly independent. We conclude by induction that for
all m " N the languagesl(ai b) for i # m are linearly independent, which implies
that all languages l(an b) for n " N are linearly independent. $%

A similar argument works for NPAs under the max algebra semanticsÑone
can easily repeat the argument in the above theorem for the language accepted
by the NPA resulting from applying Proposition 3 to the NPA ( 3).

13

n - length longest sequence of a’s in u

4 Expressive Power of NPAs

Our convex language semantics for NPAs coincides with the standard semantics
for DPAs when all convex sets in the transition functions are singleton sets. In
this section, we show that NPAs are in fact strictly more expressive than DPAs.
We give two results. First, we exhibit a concrete language over a binary alphabet
that is recognizable by a NPA, but not recognizable by any DPA. This argument
uses elementary facts about the Hankel matrix, and actually shows that NPAs
are strictly more expressive than weighted finite automata (WFAs).

Next, we separate NPAs and DPAs over a unary alphabet. This argument is
substantially more technical, relying on deeper results from number theory about
linear recurrence sequences.

4.1 Separating NPAs and DPAs: Binary Alphabet

Consider the language L
a

: {a, b}! ! [0, 1] by L
a

(u) = 2" n, where n is the length
of the longest sequence of a’s occurring in u. Recall that this language is accepted
by the NPA (3) using the min algebra.

Theorem 1. NPAs are more expressive than DPAs. Specifically, there is no

DPA, or even WFA, accepting L
a

.

Proof. Assume there exists a WFA accepting L
a

, and let l(u) for u " {a, b}! be
the language of the linear combination of states reached after reading the word
u. We will show that the languages l(anb) for n " N are linearly independent.
Since the function that assigns to each linear combination of states its accepted
language is a linear map, this implies that the set of linear combinations of states
of the WFA is a vector space of infinite dimension, and hence the WFA cannot
exist.

The proof is by induction on a natural number m. Assume that for all natural
numbers i # m the languages l(aib) are linearly independent. For all i # m we
have l(aib)(am) = 2" m and l(aib)(am+1 ) = 2" m" 1; however, l(am+1 b)(am) =
l(am+1 b)(am+1 ) = 2" m" 1. If l(am+1 b) is a linear combination of the languages
l(aib) for i # m, then there are constants c1, . . . , cm " R such that in particular

(c1 + · · ·+ c
m

)2" m = 2" m" 1 and (c1 + · · ·+ c
m

)2" m" 1 = 2" m" 1.

These equations cannot be satisfied. Therefore, for all natural numbers i # m+ 1
the languages l(aib) are linearly independent. We conclude by induction that for
all m " N the languages l(aib) for i # m are linearly independent, which implies
that all languages l(anb) for n " N are linearly independent. $%

A similar argument works for NPAs under the max algebra semantics—one
can easily repeat the argument in the above theorem for the language accepted
by the NPA resulting from applying Proposition 3 to the NPA (3).

13



4.2 Separating NPAs and DPAs: Unary Alphabet

We now turn to the unary case. A weighted language over a unary alphabet can
be represented by a sequencehui i = u0, u1, . . . of real numbers. We will give
such a language that is recognizable by a NPA but not recognizable by any WFA
(and in particular, any DPA) using results on linear recurrence sequences, an
established tool for studying unary weighted languages.

We begin with some mathematical preliminaries. A sequence of real numbers
hui i is a linear recurrence sequence(LRS) if for some integer k 2 N (the order),
constantsu0, . . . , uk�1 2 R (the initial conditions ), and coe! cients b0, . . . , bk�1 2
R, we have

un+k = bk�1un�1 + á á á+ b0un

for every n 2 N. A well-known example of an LRS is theFibonacci sequence, an
order-2 LRS satisfying the recurrencef n+2 = f n+1 + f n . Another example of an
LRS is any constant sequence, i.e.,hui i with ui = c for all i .

Linear recurrence sequences are closed under linear combinations: for any two
LRS hui i, hvi i and constants ! , " 2 R, the sequenceh! ui + " vi i is again an LRS
(possibly of larger order). We will use one important theorem about LRSs. See
the monograph by Everest et al. [11] for details.

Theorem 2 (Skolem-Mahler-Lech). If hui i is an LRS, then its zero set
{ i 2 N | ui = 0 } is the union of a Þnite set along with Þnitely many arithmetic
progressions (i.e., sets of the form{ p + kn | n 2 N} with k 6= 0 ).

This is a celebrated result in number theory and not at all easy to prove. To
make the connection to probabilistic and weighted automata, we will use two
results. The Þrst proposition follows from the Cayley-Hamilton Theorem.

Proposition 4 (see, e.g., [ 21]). Let L be a weighted unary language recog-
nizable by a weighted automatonW. Then the sequence of weightshui i with
ui = L (ai ) is an LRS, where the order is at most the number of states inW .

While not every LRS can be recognized by a DPA, it is known that DPAs
can recognize a weighted language encoding the sign of a given LRS.

Theorem 3 (Akshay, et al. [ 1, Theorem 3, Corollary 4]). Given any LRS
hui i, there exists a stochastic matrixM such that

un � 0 () uT M n v � 1/ 4

for all n, where u = (1 , 0, . . . , 0) and v = (0 , 1, 0, . . . , 0). Equality holds on
the left if and only if it holds on the right. The languageL (an ) = uT M n v is
recognizable by a DPA with input vectoru, output vector v, and transition matrix
M (Remark 1). If the LRS is rational, M can be taken to be rational as well.

We are now ready to separate NPAs and WFAs over a unary alphabet.

Theorem 4. There is a language over a unary alphabet that is recognizable by
an NPA but not by any WFA (and in particular any DPA).
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Proof uses results of Linear recurrence sequences  
Skolem-Macher-Lech Theorem  

Cayley-Hamilton Theorem



(Un)Decidability

5 Checking Language Equivalence of NPAs

Now that we have a coalgebraic model for NPA, a natural question is whether
there is a procedure to check language equivalence of NPAs. We will show that
language equivalence of NPAs is undecidable by reduction from thethreshold
problem on DPAs. Nevertheless, we can deÞne a metric on the set of languages
recognized by NPAs to measure their similarity. While this metric cannot be
computed exactly, it can be approximated to any given precision in Þnite time.

5.1 Undecidability and Hardness

Theorem 5. Equivalence of NPAs is undecidable when|A| ! 2 and the P
c

D-
algebra on[0, 1] extends the usualD-algebra on[0, 1].

Proof. Let X be a DPA and ! " [0, 1]. We deÞne NPAsY and Z as follows:

Y =
!! X

A A

A
Z = ! A

Here the node labeledX represents a copy of the automatonX Ñthe transition
into X goes into the initial state of X . Note that the edges are labeled byA to
indicate a transition for every element ofA. We see thatL

Y

(" ) = ! = L
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Approximation 

Proof. The construction in Theorem 5 shows that the lesser-than threshold
problem can be reduced to the equivalence problem for NPAs withmaxsemantics,
so we show that Positivity can be reduced to the lesser-than threshold problem
on probabilistic automata with a unary alphabet. Given any rational LRS !ui ",
clearly !# ui " is an LRS as well, so by Theorem3 there exists a rational stochastic
matrix M such that

# un > 0 $% uT M n v > 1/ 4

for all n, where u = (1 , 0, . . . , 0) and v = (0 , 1, 0, . . . , 0). Taking M to be the
transition matrix, v to be the input vector, and u to be the output vector, the
probabilistic automaton corresponding to the right-hand side is a nonsatisfying
instance to the threshold problem with threshold & 1/ 4 if and only if the !ui " is
a satisfying instance of the Positivity problem.

Applying Proposition 3 yields an analogous reduction from Positivity to the
equivalence problem of NPAs withmin semantics. '(

5.2 Checking Approximate Equivalence

The previous negative results show that deciding exact equivalence of NPAs is
computationally intractable (or at least very di ! cult, for a unary alphabet). A
natural question is whether we might be able to check approximate equivalence.
In this section, we show how to approximate a metric on weighted languages. Our
metric will be discountedÑdi " erences in weights of longer words will contribute
less to the metric than di" erences in weights of shorter words.

Given c ) [0, 1) and two weighted languagesl1, l2 : A! * [0, 1], we deÞne

dc(l1, l2) =
!

u" A !

|l1(u) # l2(u)| á
"

c
|A|

# |u |

.

Suppose that l1 and l2 are recognized by given NPAs. Sincedc(l1, l2) = 0 if and
only if the languages (and automata) are equivalent, we cannot hope to compute
the metric exactly. We can, however, compute the weight of any Þnite word under
l1 and l2. Combined with the discounting in the metric, we can approximate this
metric dc within any desired (nonzero) error.

Theorem 6. There is a procedure that givenc ) [0, 1), ! > 0, and computable
functions l1, l2 : A! * [0, 1] outputs x ) R+ such that |dc(l1, l2) # x| & ! .

Proof. Let n = +logc((1 # c) á! ), ) N and deÞne

x =
!

u" A ! ,|u |<n

|l1(u) # l2(u)| á
"

c
|A|

# |u |

.
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Conclusions

• Non-determinism + probabilities subtle from a semantics 
and algorithmic perspective


• Connections between and interplay of convex algebra, 
number theory, category theory


• Approximation techniques interesting for verification 
applications - different metrics?



Questions?


