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Context

e Probabilistic automata: randomized computation,
semantics of programming languages, machine learning.

e Non-deterministic automata: concurrent and distributed
systems

e Rabin 80’s: use of nondeterminism and probabilities
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This talk

e |Language semantics for NPA
e (Un)decidabillity

e EXpressiveness of non-determinism
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Powerset construction

<o,t>

S > 2 x P(S)4 o(U)=1 <= 3JueUo(u) =1

o(U) =\ olw)

P(S) =225 9w p(sya (@) = Jtw)(a)

\, We will used monads and algebras |
| to define a generalised powerset construction and have |
' a general language semantics for a class of automata |
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Monads and their algebras

e Monads as effectful computation (Moggi 80’s)

e Effects : non-determinism, probabilities, input-output, ...

T : Set — Set P(S)={U | U c 5}
n:S—TS n(s) ={s}
p: TTS =TS p(P) = U U

Uved

I 1] satisfy some reasonable laws e.g. [L O 7] = 1d
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Definition  An algebra for a monad (71,7, ) is a pair (X, h) consisting of
a carrier set X and a function h: TX — X making the following diagrams
commaute.

X 17X TTX —Lthy TX

\ )l(h | [»

TX —" v x

P join-semilattices (with a bottom element)
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Language semantics for
more general automata

S =27 0 x T(S)A
(5) o(s) =ao (To)(s)

T(S) =225 0 x T(S)A

t(s)(a) = po (Tt)(s)(a)
a: T(0) = O 0is a T-algebra
w: TT(S) — T(S) T(S) is a T-algebra (free)
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Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
alphabet A is defined by a tuple (S, so,7V,{Ta}taca), where S is a finite set of
states, sg € S is the initial state, v: S — [0,1] is the output function, and
Ta: S = P.DS are the transition functions indexed by inputs a € A.
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Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
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Proposition 1. Any P.D- algebra on|0, 1] extendingE: D|0,1] — [0, 1] is of the
form P.DI0, 1] Peby g, 0,1] — [0,1], where « is a P.-algebra.

Proposition 2. The only P.-algebras on the convex sq0, 1] are min and makx.

Corollary 1. The only P.D-algebras on|0, 1] extending E are P.D]JO0, 1] IR
P[0, 1] %% [0, 1] and P.D[0, 1] 99& P[0, 1] 9% [0, 1].
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Summary, so far
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generalised powerset construction
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Next

 Non-determinism brings a lot of trouble... is it necessary?

e Given two NPAs can we decide whether they are
equivalent?



Is non-determinism really
important?
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Theorem 1. NPAs are more expressive than DPAs. Specifically, there is no
DPA, or even WFA, accepting L.
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(Un)Decidability

e (Un)decidability of threshold problem not know for |A|=1
* Reduction to the Positivity problem for LRS
* Decidabillity of Positivity open for >80 years

* Decision procedure would entall breakthroughs in open
problems in number theory (algorithm to compute the
homogeneous Diophantine approximation type for a class
of transcendental numbers)

Corollary 2. The Positivity problem for linear recurrence sequences can be
reduced to the equivalence problem of NPAs over a unary alphabet.
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* Approximate a discounted metric on weighted languages

* |Longer words contribute less than shorter words:

Given c) [0, 1) and two weighted languagedq,l>: A* * [0, 1], we debPne

| o
de(l1,12) = o I1(u) # l>(u)| a Al

* Approximate the metric for any desired non-zero error:

Theorem € There is a procedure that givenc) [0,1), ! > 0, and computable
functions 11,12 A' * [0, 1] outputs x ) R: such that|dc(I1,l2) # x| & !.



Conclusions

* Non-determinism + probabillities subtle from a semantics
and algorithmic perspective

 Connections between and interplay of convex algebra,
number theory, category theory

* Approximation techniques interesting for verification
applications - different metrics?



Questions?



