Decidability and Expressiveness
results for Nondeterministic
Probabilistic Automata

Alexandra Silva

joint work with

. Justin Hsu Gerco van Heerdt Joel Ouaknine

Context

e Probabilistic automata: randomized computation,
semantics of programming languages, machine learning.

e Non-deterministic automata: concurrent and distributed
systems

e Rabin 80’s: use of nondeterminism and probabilities

run_round, 3/4

d, 1/4
run_roun run_round, 1/4 run_round, 3/4

',,"“."- AI 0 ",./"‘—_ >.~-'\~."_--"--—- "~.;_‘\‘::':»:- '.::::::';’
>i q0) »L q ; | L qs J

Non-deterministic
probabilistic automata

S1
a,b 1 ¢,
: 1
¢ 1 °
H& 8 > 2 a,b
SO . a
2 1 b 1 S3
2

S

b

This talk

e |Language semantics for NPA
e (Un)decidabillity

e EXpressiveness of non-determinism

Language semantics via
powerset construction

. {o}
N |2

S N

Language semantics via
powerset construction

UL 1o}
PN |a
bl /°) ,
: 5 SN

S —2x PS8 P(S) — 2 x P(8)”
Q—2xQ”

bisimilarity language equivalence

Powerset construction

<

22, 9 % P(S)4

Powerset construction

27 2 x P(S)A o(U)=1 < JueUo(u) =1

Powerset construction

Powerset construction

S =22 2 % P(9)A o(U) =1 < JueUolu) =1
o(U) = \/ o(w)
U
P(S) =275 2 x P(S)A

Powerset construction

S =22 2 % P(9)A o(U) =1 < JueUolu) =1
o(U) = \/ o(w)
P(S) 2225 9w prgyd HO)(@) = JHw)(a)
U

Powerset construction

S =22 2 % P(9)A o(U) =1 < JueUolu) =1
o(U) = \/ o(w)
P(S) =225 9w p(sya (@) = Jtw)(a)
U

Powerset construction

S =22 2 % P(9)A o(U) =1 < JueUolu) =1
o(U) = \/ o(w)
P(S) =225 9w p(sya (@) = Jtw)(a)
U

Powerset construction

S =22 2 % P(9)A o(U) =1 < JueUolu) =1
o(U) = \/ olu)
U

» 2 x P(S)* t(U)(a) = Ut(u)(a)

JSL are the algebras for the P m

Powerset construction

<o,t>

S > 2 x P(S)4 o(U)=1 <= 3JueUo(u) =1

o(U) =\ olw)

P(S) =225 9w p(sya (@) = Jtw)(a)

\, We will used monads and algebras |
| to define a generalised powerset construction and have |
' a general language semantics for a class of automata |

Monads and their algebras

e Monads as effectful computation (Moggi 80’s)

e Effects : non-determinism, probabilities, input-output, ...

Monads and their algebras

e Monads as effectful computation (Moggi 80’s)

e Effects : non-determinism, probabilities, input-output, ...

T : Set — Set
n:S—7TS

w:TTS —TS

Monads and their algebras

e Monads as effectful computation (Moggi 80’s)

e Effects : non-determinism, probabilities, input-output, ...

T : Set — Set PS)={U|U < S}
n:S—7TS n(s) = {s}
w:TTS—TS u(P) = U U

Ued

Monads and their algebras

e Monads as effectful computation (Moggi 80’s)

e Effects : non-determinism, probabilities, input-output, ...

T : Set — Set P(S)={U | U c 5}
n:S—TS n(s) ={s}
p: TTS =TS p(P) = U U

Uved

I 1] satisfy some reasonable laws e.g. [L O 7] = 1d

Monads and their algebras

e Associated with each monad there is a category of (free)
algebras

Monads and their algebras

e Associated with each monad there is a category of (free)
algebras

Definition An algebra for a monad (71,7,) is a pair (X, h) consisting of
a carrier set X and a function h: TX — X making the following diagrams
commaute.

X 17X TTX —Lthy TX

\)l(h | [»

TX —" v x

Monads and their algebras

e Associated with each monad there is a category of (free)
algebras

Definition An algebra for a monad (71,7,) is a pair (X, h) consisting of
a carrier set X and a function h: TX — X making the following diagrams
commaute.

X 17X TTX —Lthy TX

\)l(h | [»

TX —" v x

P join-semilattices (with a bottom element)

Language semantics for
more general automata

<o,t>

S > O x T(9)4

o(s) =ao (To)(s)

T(S) =225 0 x T(S)A

Language semantics for
more general automata

S =27 0 x T(S)A
(5) o(s) =ao (To)(s)

a: T(0) = O

Language semantics for
more general automata

S =27 0 x T(S)A
(5) o(s) =ao (To)(s)

F(S) <2, 0 % T(5)4 £(s)(a) = po (Tt)(s)(a)

a: T(0) = O

Language semantics for
more general automata

S =27 0 x T(S)A
(5) o(s) =ao (To)(s)

T(S) =225 0 x T(S)A

t(s)(a) = po (Tt)(s)(a)
a: T(0) = O 0is a T-algebra
w: TT(S) — T(S) T(S) is a T-algebra (free)

Deterministic Probabilistic

automarta
<o,t> 5 A
S » 0,1] x D(S) 3(s) = oo (T0)(s)
D(S) =225 [0,1] x D(S)

o = E: D|0,1] — |0, 1]

Deterministic Probabilistic
automata

<o,t>

S

\ X A
> [0,1] x D(S) o(s) = a o (To)(s)

o =E: (0.1 = 0.1

Deterministic Probabilistic

automata
<o,t> 5 A
S » 0,1] x D(S) 3(s) = oo (T0)(s)
. t(s)(a) = po (Tt)(s)(a)
D(S) === [0, 1] x D(S)*

o =E: (0.1 = 0.1

Deterministic Probabilistic
automata

<o,t>

S

\ X A
> [0,1] x D(S) o(s) = a o (To)(s)

t(s)(a) = po (Tt)(s)(a)

o = E: D|0,1] — [0, 1] [0,1] is a convex algebra

4 = m: DDX - DX

Deterministic Probabilistic
automata

<o,t> 5 A
S » 0,1] x D(S) 3(s) = oo (T0)(s)
. t(s)(a) = po (Tt)(s)(a)
D(S) === [0,1] x D(S)*

o = E: D|0,1] — [0, 1] [0,1] is a convex algebra

4 = m: DDX - DX

DPA, example

b,1/2 s
S =275 10, 1] x D(S)A %;j@

0 a,l/3 1

DPA, example

b,1/2 s
S =275 10, 1] x D(S)A %;j@
0 q,1/3 °1

Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
alphabet A is defined by a tuple (S, so,7V,{Ta}taca), where S is a finite set of
states, sg € S is the initial state, v: S — [0,1] is the output function, and
Ta: S = P.DS are the transition functions indexed by inputs a € A.

Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
alphabet A is defined by a tuple (S, so,7V,{Ta}taca), where S is a finite set of
states, sg € S is the initial state, v: S — [0,1] is the output function, and
Ta: S = P.DS are the transition functions indexed by inputs a € A.

S — 2 x P(S)”

Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
alphabet A is defined by a tuple (S, so,7V,{Ta}taca), where S is a finite set of
states, sg € S is the initial state, v: S — [0,1] is the output function, and
Ta: S = P.DS are the transition functions indexed by inputs a € A.

S 2 x P(S)A S —[0,1] x P.D(S)"

S1

N|—

Definition A nondeterministic probabilistic automaton (NPA) over a (finite)
alphabet A is defined by a tuple (S, so,7V,{Ta}taca), where S is a finite set of
states, sg € S is the initial state, v: S — [0,1] is the output function, and
Ta: S = P.DS are the transition functions indexed by inputs a € A.

S 2 x P(S)A S —[0,1] x P.D(S)"

I

algebra monad

Language semantics

E L intuitively

a

1
2 S0 S0
S3
b
S2
a a
\ %)
S0 S0 551
a a
\ 1,1
\ 1 1 7 (381 7
S0 551 T 552 3

e L

Language semantics

E L intuitively

a

1
2 S0 S0 S0
S3
) b
2
a a a
\
\ Y 1 / 1
S0 S0 551 T 582
a a \a
\ 1,1 1 1
\ X) 5(551 + 552) + 551
S0 551 T 552 3 1
§ § = 251 7T 152
1 % % max
min

Language semantics
formally

S — [0,1] x P.D(S)*

I

algebra monad

P.D isacomposite monad

Language semantics
formally

S —[0,1] x P.D(S)*

T T The semantics should be
algebra monad conservative set DPA

P.D isacomposite monad

Language semantics
formally

S —[0,1] x P.D(S)*

T T The semantics should be
algebra monad conservative set DPA

P.D isacomposite monad

{}l\

P.D[0, 1] 1]

Language semantics
formally

{}l\

P.D[0, 1] 1]

Proposition 1. Any P.D- algebra on|0, 1] extendingE: D|0,1] — [0, 1] is of the
form P.DI0, 1] Peby g, 0,1] — [0,1], where « is a P.-algebra.

Proposition 2. The only P.-algebras on the convex sq0, 1] are min and makx.

Corollary 1. The only P.D-algebras on|0, 1] extending E are P.D]JO0, 1] IR
P[0, 1] %% [0, 1] and P.D[0, 1] 99& P[0, 1] 9% [0, 1].

Language semantics
formally

Proof:
Basic convex algebra facts
:Con({{ 0},{1},[0,1]}) = P[0, 1] - }l \
P.[0,1] —— [0, 1] $.D(0.1] 0.1
I is completely determined by! ([0, 1])
1 ([0,1)=00or ! ([0, 1]) = 1.
min or A on[0, 1] extendingE: D[0, 1] — [0, 1] is of the

— [0, 1], where « is a P.-algebra.

_Proposition 2. The only P.-algebras on the convex s€0, 1] are min and max.

Ny . R _ - kil =
o PO T 2] = - - i

Corollary 1. The only P.D-algebras on[O, 1] extending E are P.D[O0, 1] IR
P[0, 1] %% [0, 1] and P.D[0, 1] 99& P[0, 1] 9% [0, 1].

Language semantics
formally

Proof:
Basic convex algebra facts

:Conv({{ 0},{1},[0,1}}) = P[0, 1] - }l \
P.[0,1] ——— [0, 1] P.D(0.1 0.1
I is completely determined by! ([0, 1])

1 ([0,1]) =0 or ! ([0,1]) = 1.

min or A on|0, 1] extend |

_Proposition 2. The only Pc-algebras on the convex s€D, 1] are min and max.

Ny . R ~ - kil =
o PO T 2] = - - i

Corollary 1. The only P.D-algebras on[O, 1] extending E are P.D[O0, 1] IR
P[0, 1] %% [0, 1] and P.D[0, 1] 99& P[0, 1] 9% [0, 1].

Summary, so far

S —[0,1] x P.D(S)*

generalised powerset construction

P.D(S)! [0,1]" P.D(S)"

v } Deterministic automaton
.~ min and max are the only | _

] algebras : Ji Language semantics as |
e e w usual using min/max to combine set of output results |

—i

e

Next

 Non-determinism brings a lot of trouble... is it necessary?

e Given two NPAs can we decide whether they are
equivalent?

Is non-determinism really
important?

ab 1/@%; a,b
2 1
H& e L e, La:{a,B' ! [0,1]byLa(u)=2""
S0) a ’ - - - - -
Z\&b& s3 n - length longest sequence of a’s in u

S2

Theorem 1. NPAs are more expressive than DPAs. Specifically, there is no
DPA, or even WFA, accepting L.

Is non-determinism really
important?

Theorem ¢« There is a language over a unary alphabet that is recognizable b
an NPA but not by any WFA (and in particular any DPA).

Is non-determinism really
important?

Theorem ¢« There is a language over a unary alphabet that is recognizable b
an NPA but not by any WFA (and in particular any DPA).

|

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A

CBA A 2T TR

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A
CBA A 2T TR

Ly (")=1=1Lz(")

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A
Y= A FSNA s z= (oA
LY (Il) —_ ! — LZ (II)

Ly (av)=(##ConJy({!,Lx (V)}) Lz(av)="!.

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A

Ly()="!=Lz(")
Ly (av)=(##ConJy({!,Lx (V)}) Lz(av)="!.

if # = min, then Ly = Lz if and only if Lx(v) > ! for all v € A

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A

Ly()="!=Lz(")
Ly (av)=(##ConJy({!,Lx (V)}) Lz(av)="!.

if # = min, then Ly = Lz if and only if Lx(v) > ! for all v € A
= max Lx (V) $!

(Un)Decidability

Theorem £ Equivalence of NPAs is undecidable whepA|! 2 and the P.D-
algebra on]0, 1] extends the usuaD -algebra on|0, 1].

Proof. Let X be a DPA and! " [0,1]. We debne NPAsSY and Z as follows:

A
NG L Sl

Ly (")=1=1Lz(")

Ly (av) = (# # Comy({! , Lx ()} | e e

if # = min, then Ly = Lz if and only if Lx(v) > ! for all v € A
= max Lx (V) $!

(Un)Decidability

e (Un)decidability of threshold problem not know for |A|=1
* Reduction to the Positivity problem for LRS
* Decidabillity of Positivity open for >80 years

* Decision procedure would entall breakthroughs in open
problems in number theory (algorithm to compute the
homogeneous Diophantine approximation type for a class
of transcendental numbers)

Corollary 2. The Positivity problem for linear recurrence sequences can be
reduced to the equivalence problem of NPAs over a unary alphabet.

Approximation

Approximation

* Deciding exact equivalence of NPAs is computationally
intractable (or at least very difficult, for a unary alphabet)

Approximation

* Deciding exact equivalence of NPAs is computationally
intractable (or at least very difficult, for a unary alphabet)

* Approximate a discounted metric on weighted languages

Approximation

* Deciding exact equivalence of NPAs is computationally
intractable (or at least very difficult, for a unary alphabet)

* Approximate a discounted metric on weighted languages

* |Longer words contribute less than shorter words:

Given c) [0, 1) and two weighted languagedq,l>: A* * [0, 1], we debPne

| o
de(l1,12) = o I1(u) # l>(u)| a Al

Approximation

* Deciding exact equivalence of NPAs is computationally
intractable (or at least very difficult, for a unary alphabet)

* Approximate a discounted metric on weighted languages

* |Longer words contribute less than shorter words:

Given c) [0, 1) and two weighted languagedq,l>: A* * [0, 1], we debPne

| o
de(l1,12) = o I1(u) # l>(u)| a Al

* Approximate the metric for any desired non-zero error:

Theorem € There is a procedure that givenc) [0,1), ! > 0, and computable
functions 11,12 A' * [0, 1] outputs x) R: such that|dc(I1,l2) # x| & !.

Conclusions

* Non-determinism + probabillities subtle from a semantics
and algorithmic perspective

 Connections between and interplay of convex algebra,
number theory, category theory

* Approximation techniques interesting for verification
applications - different metrics?

Questions?

