A (co)algebraic theory of succinct acceptors

Alexandra Silva

Categorical Automata Learning Framework

calf-project.org

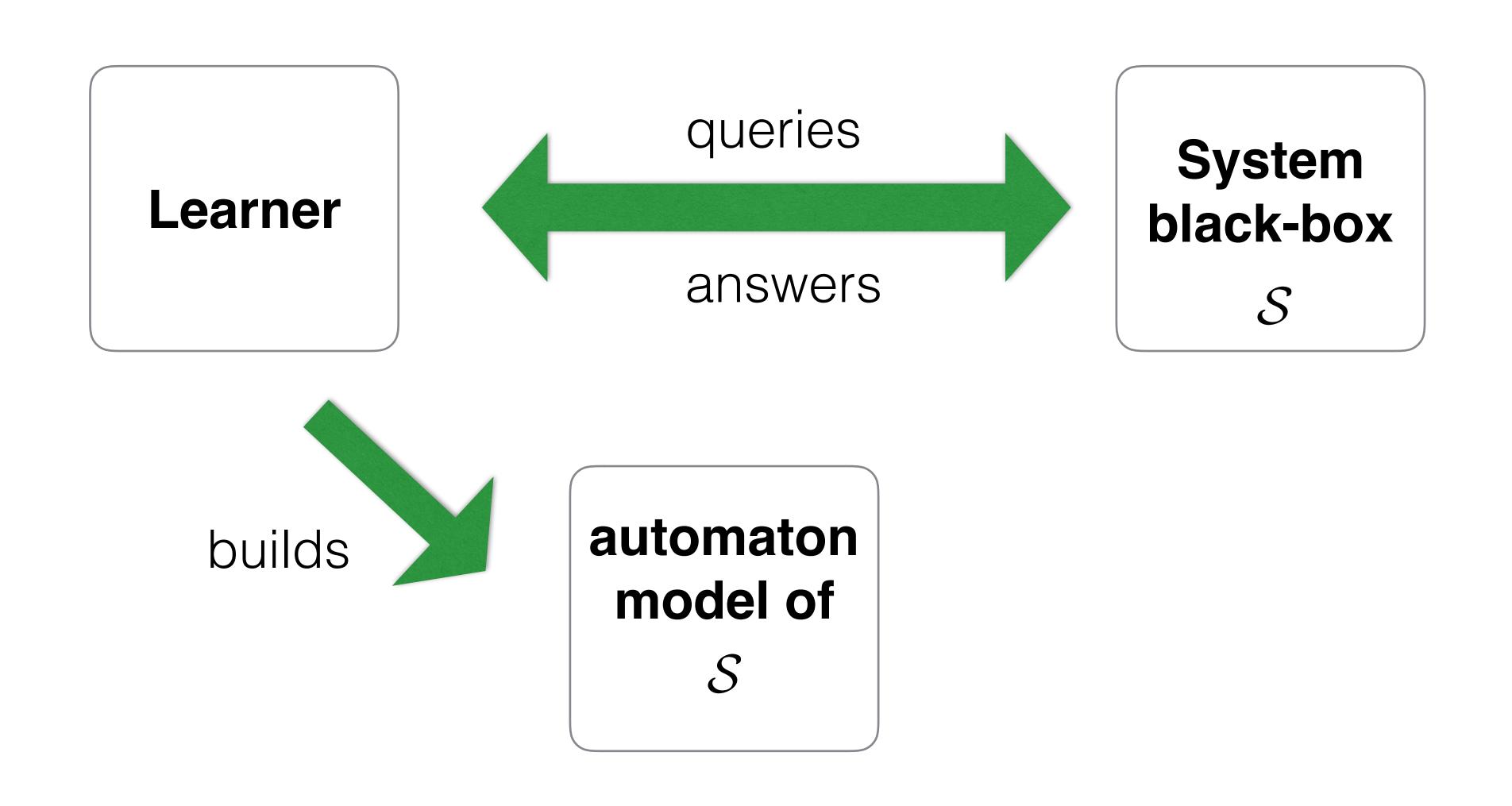
Matteo Sammartino **UCL**

Gerco van Heerdt **UCL**

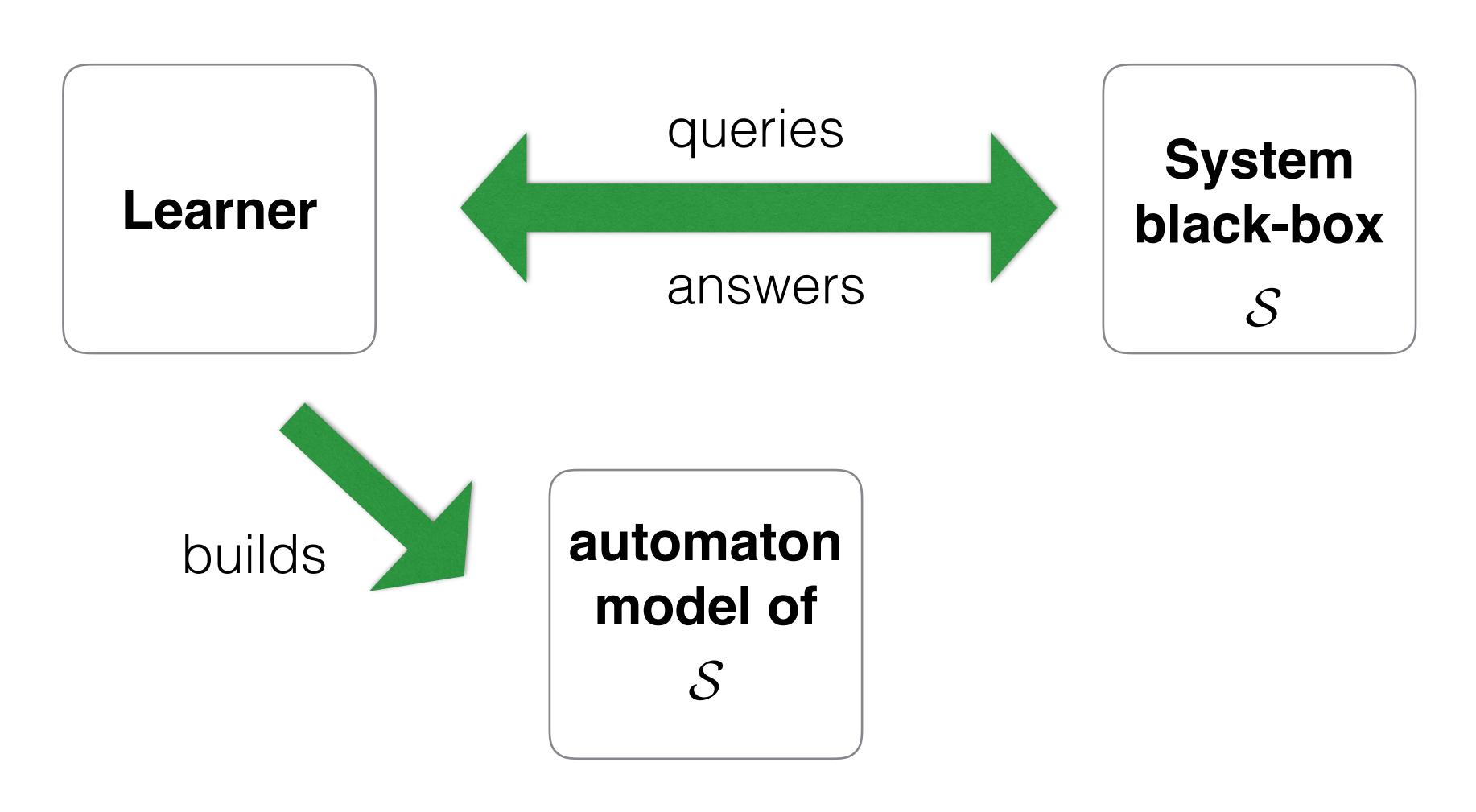
Joshua Moerman Radboud University

Maverick Chardet **ENS Lyon**

Automata learning



Automata learning



No formal specification available? Learn it!

Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^\star$

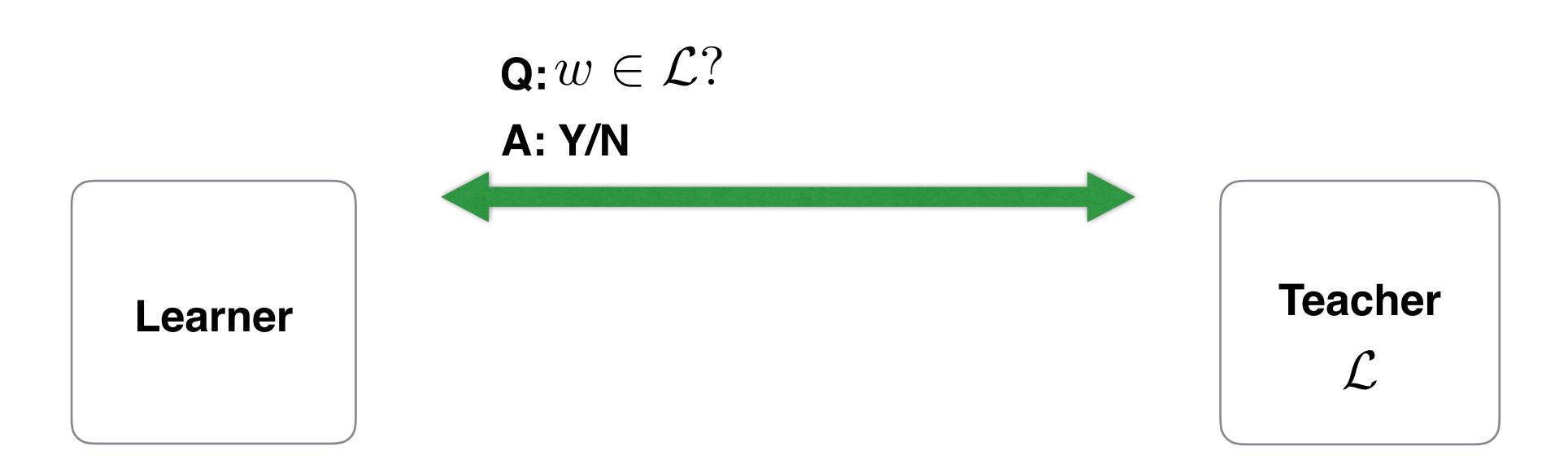
Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^*$

Learner

Teacher

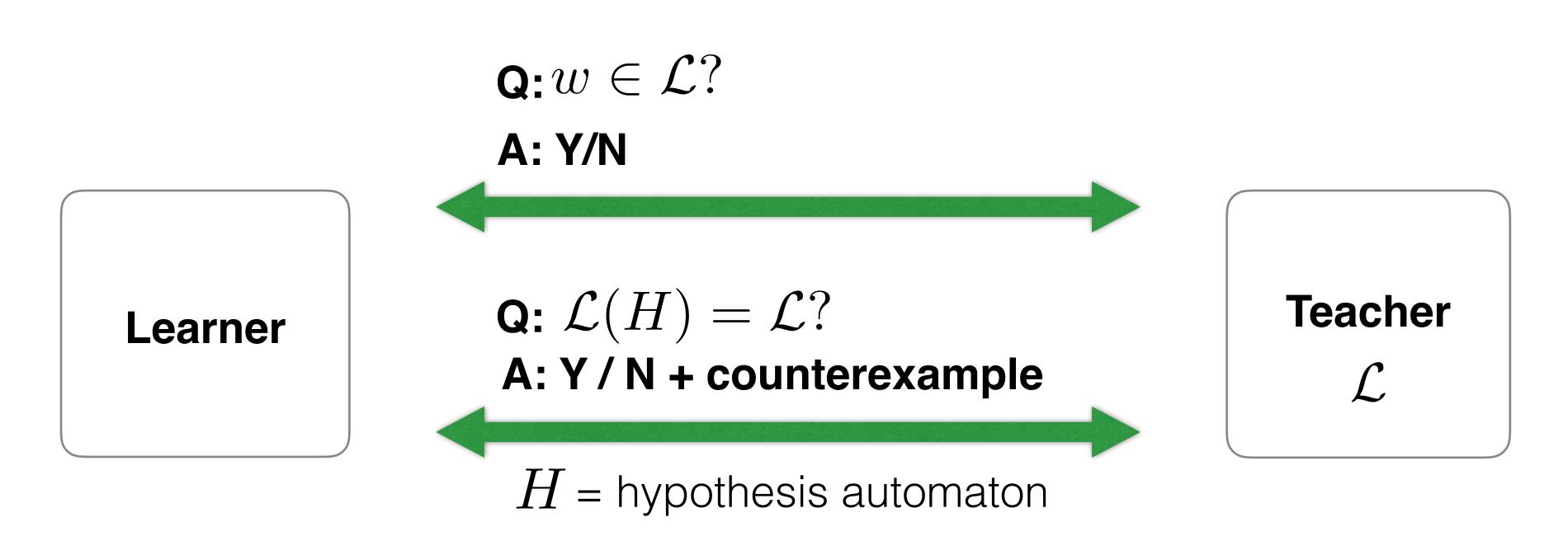
 \mathcal{L}

Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^{\star}$



Finite alphabet of system's actions A

set of system behaviors is a **regular language** $\mathcal{L} \subseteq A^*$



Finite alphabet of system's actions A

set of system behaviors is a **regular language** $\mathcal{L} \subseteq A^*$

 $\mathbf{Q}: w \in \mathcal{L}$?

A: Y/N

Learner

Q: $\mathcal{L}(H) = \mathcal{L}$?

A: Y / N + counterexample

H = hypothesis automaton

builds

Minimal DFA accepting \mathcal{L}

Teacher

 \mathcal{L}

A zoo of automata

Probabilistic

Non-deterministic

Weighted

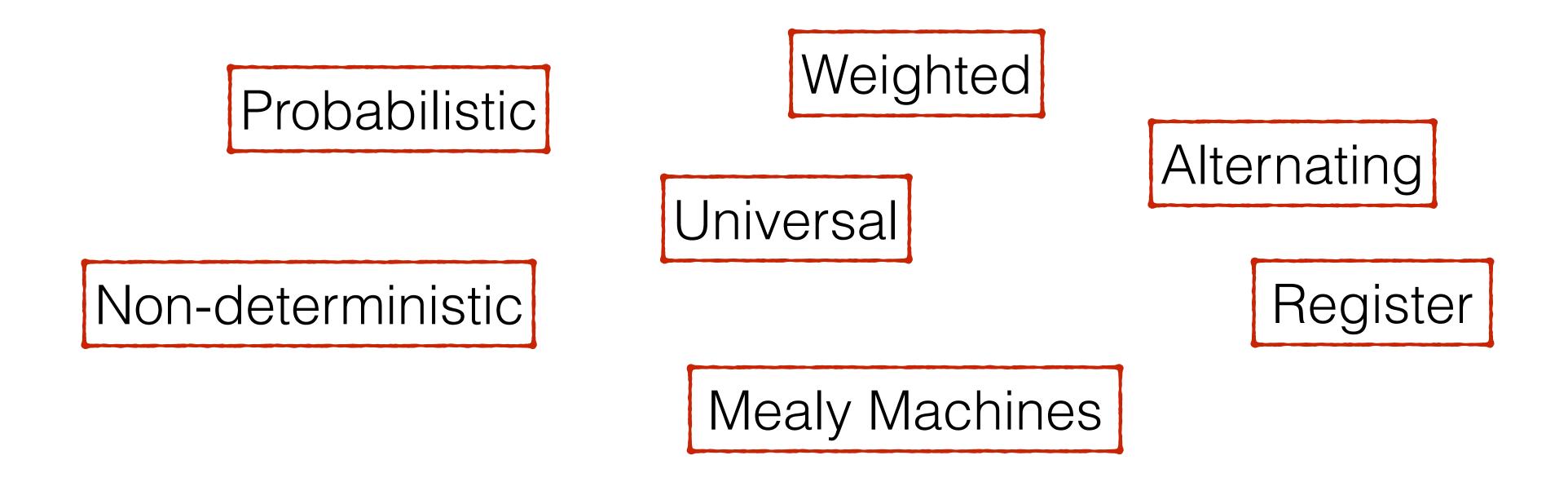
Universal

Alternating

Register

Mealy Machines

A zoo of automata

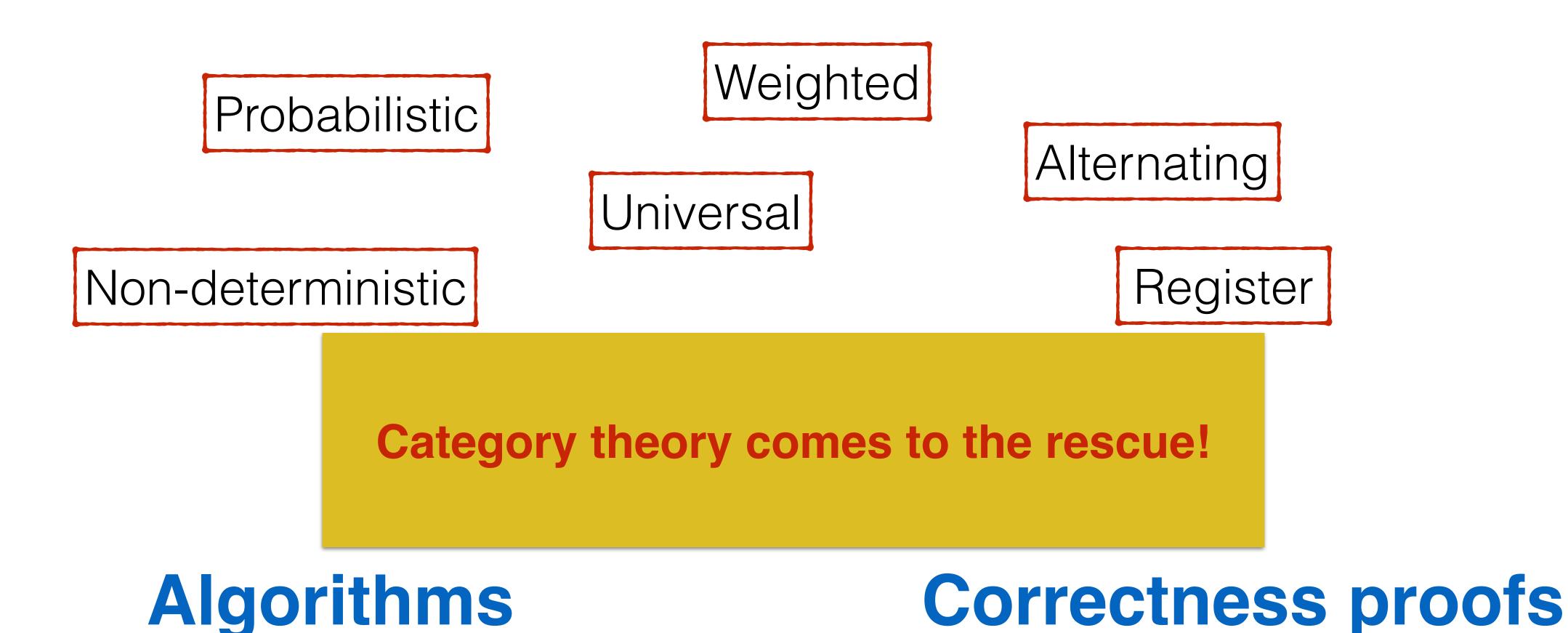


Algorithms

Correctness proofs

involved and hard to check

A zoo of automata



involved and hard to check

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$FQ$$
 $\downarrow \delta_Q$
 $\downarrow I$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Y$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$FQ$$
 $\downarrow \delta_Q$
 $\downarrow I$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Y$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$
 $\downarrow \delta_Q$ $\downarrow \delta_Q$ $\downarrow I$ $\downarrow I$ $\downarrow I$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$
 \downarrow^{δ_Q} \downarrow^{0} \downarrow^{0}

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q \times A$$

$$\downarrow^{\delta_Q}$$

$$\operatorname{init}_Q Q \operatorname{out}_Q$$

$$Y$$

$$q_0 \in Q$$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$

$$\downarrow^{\delta_Q}$$

$$\text{init}_Q \qquad \text{out}_Q$$

$$\mathbf{1} \qquad \mathbf{2}$$

$$q_0 \in Q$$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$

$$\downarrow^{\delta_Q}$$

$$\mathsf{init}_Q \qquad \mathsf{out}_Q$$

$$\mathbf{1} \qquad \mathbf{2}$$

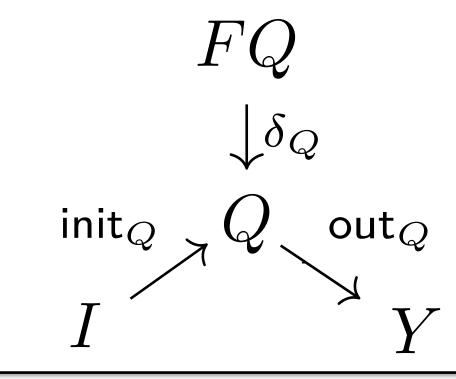
$$q_0 \in Q \qquad F \subseteq Q$$

Abstract observation data structure

Abstract observation data structure

approximates

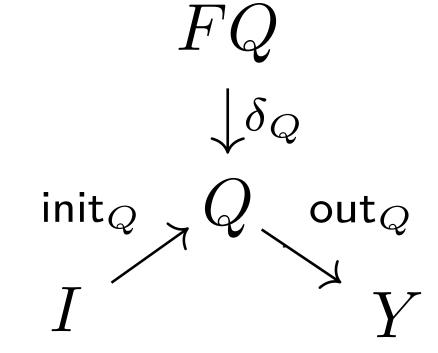
Target minimal automaton

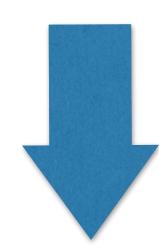


Abstract observation data structure

approximates

Target minimal automaton





abstract closedness and consistency

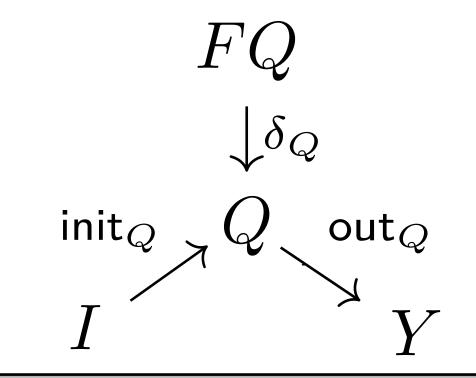
Hypothesis automaton

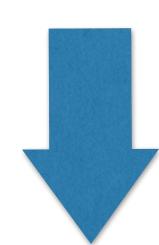
$$FH \\ \downarrow \delta_H \\ \operatorname{init}_H \to H \\ I \\ Y$$

Abstract observation data structure

approximates

Target minimal automaton





abstract closedness and consistency

Hypothesis automaton

$$FH$$

$$\downarrow \delta_H$$

$$\operatorname{init}_H \to H$$

$$I$$

$$Y$$

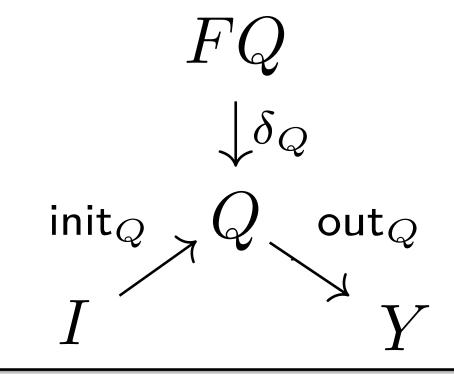
General correctness theorem

Guidelines for implementation

Abstract observation data structure

approximates

Target minimal automaton



abstract closedness and consistency

Hypothesis automaton

$$FH \\ \downarrow \delta_H \\ \operatorname{init}_H \to H \\ I \\ Y$$

General correctness theorem

Guidelines for implementation

CALF: Categorical Automata Learning Framework (arXiv:1704.05676)

Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

Change base category

Set DFAs

Nom Nominal automata

Vect Weighted automata

Change base category

Set DFAs

Nom Nominal automata

Vect Weighted automata

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Set DFAs

Nom Nominal automata

Vect Weighted automata

Observation tables

Discrimination trees

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Learning Nominal Automata (POPL '17)

Set DFAs

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Nom Nominal automata

Discrimination trees

Vect Weighted automata

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Learning Nominal Automata (POPL '17)

Set DFAs

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Nom Nominal automata

Discrimination trees

Vect Weighted automata

Learning Automata with Side-effects (arXiv:1704.08055)

Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

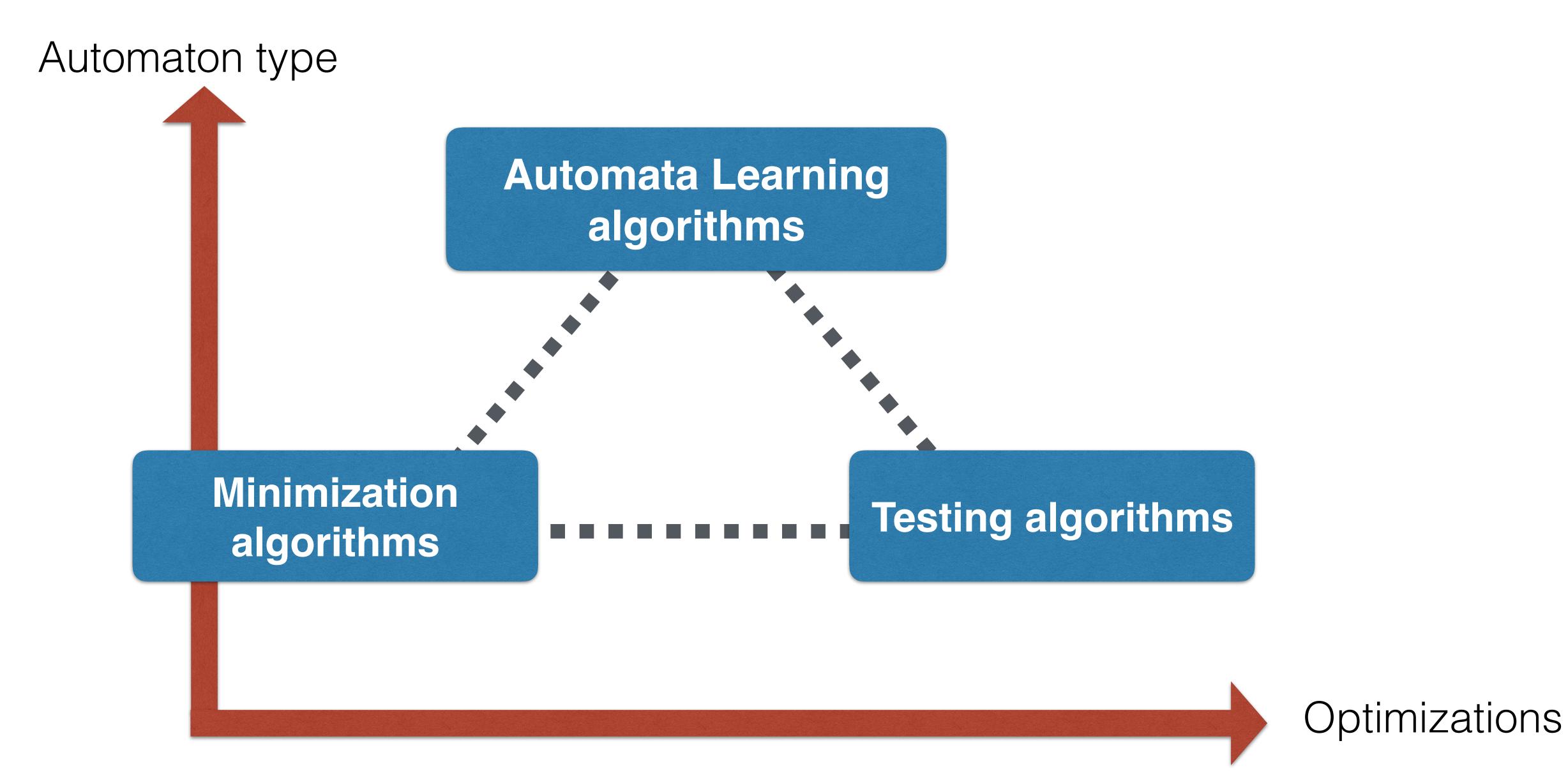
Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

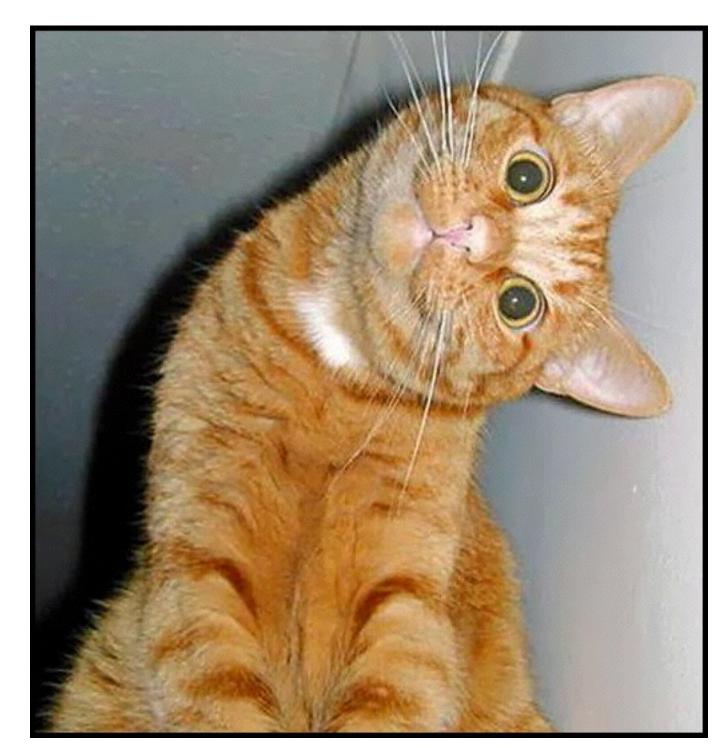
Connections with other algorithms



Ongoing and future work

- Library & tool to learn control + data-flow models (as nominal automata)
- Applications:
 - Specification mining
 - Network verification, with amazon
 - Verification of cryptographic protocols
 - Ransomware detection

What about succinct acceptors?

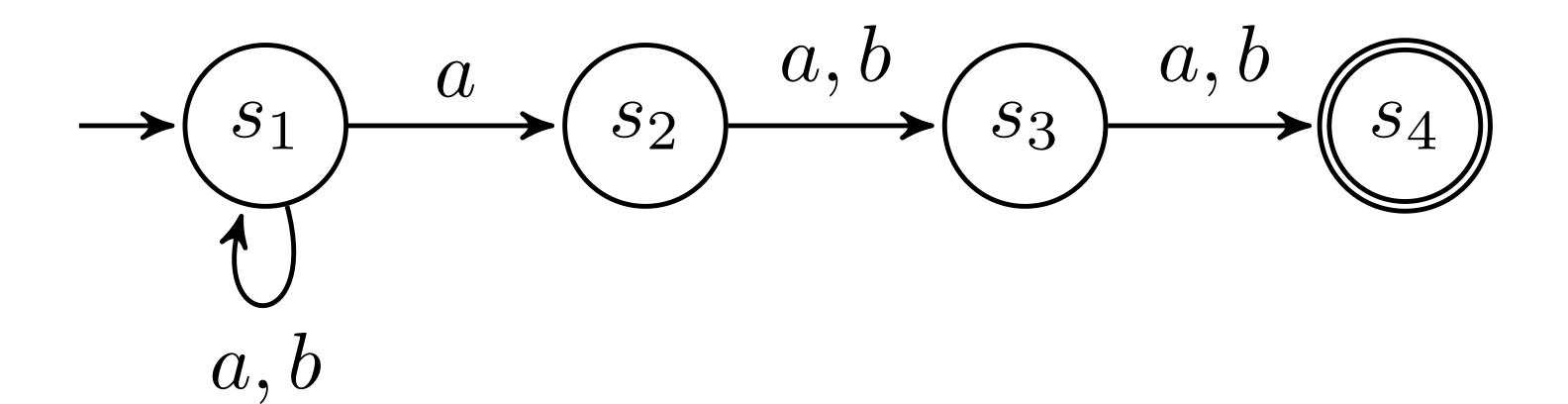


Back to basics

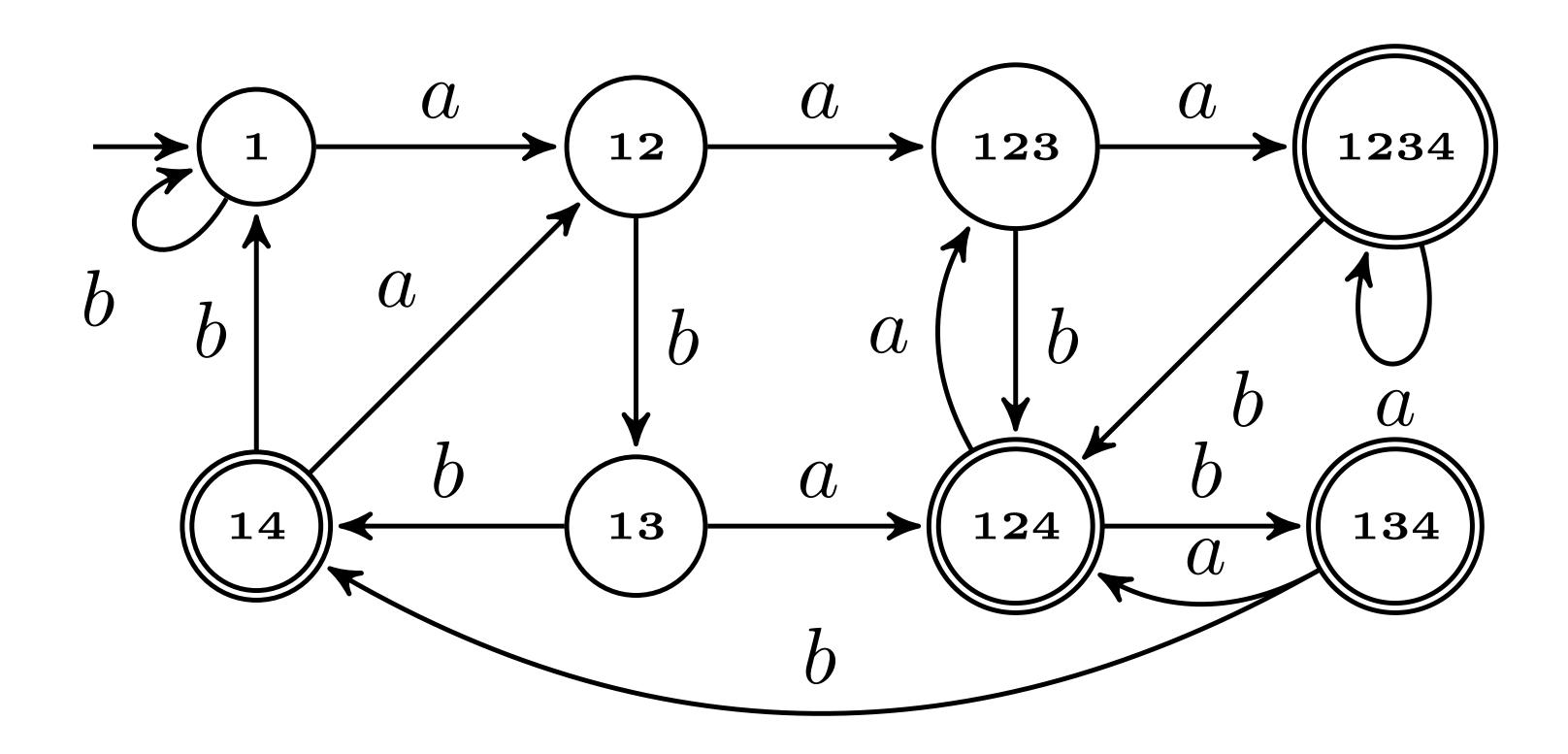
 $\mathcal{L} = \{w \in \{a,b\}^* \mid |w| > 2 \text{ and the } 3^{rd} \text{ letter from the right is an } a\}$

Back to basics

 $\mathcal{L} = \{w \in \{a,b\}^* \mid |w| > 2 \text{ and the } 3^{rd} \text{ letter from the right is an } a\}$



Back to basics



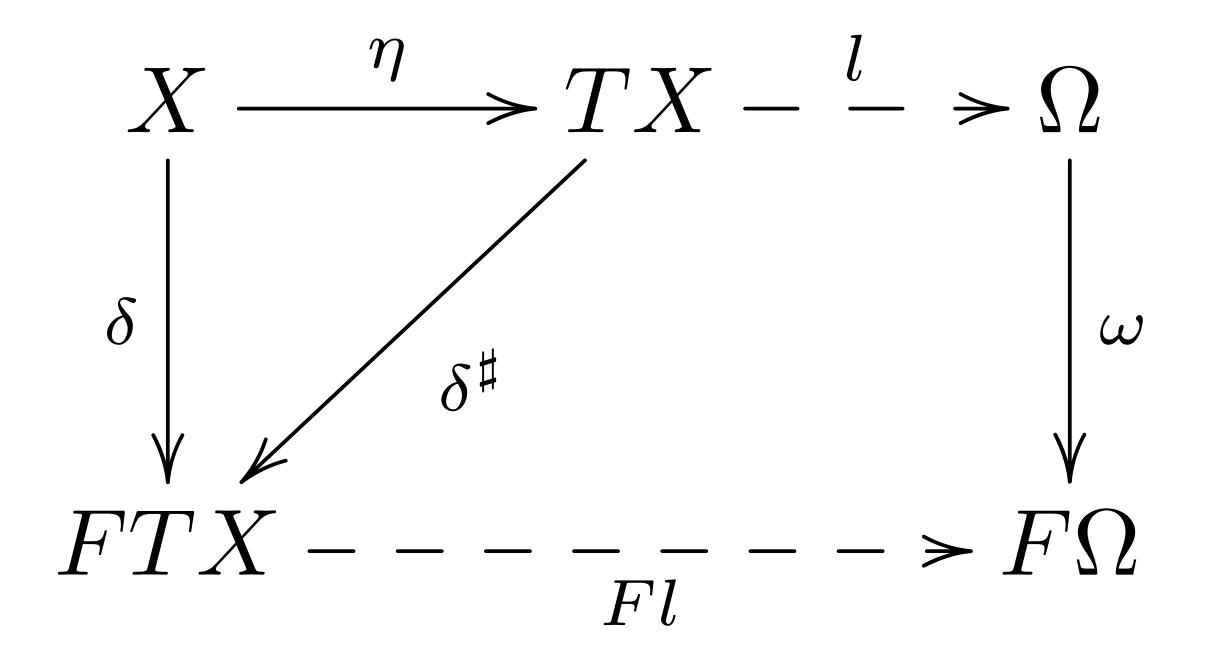
Subset construction

$$X \xrightarrow{\{\cdot\}} \mathcal{P}(X) - \stackrel{l}{-} \rightarrow 2^{A^*}$$

$$\delta \downarrow \qquad \qquad \downarrow \omega$$

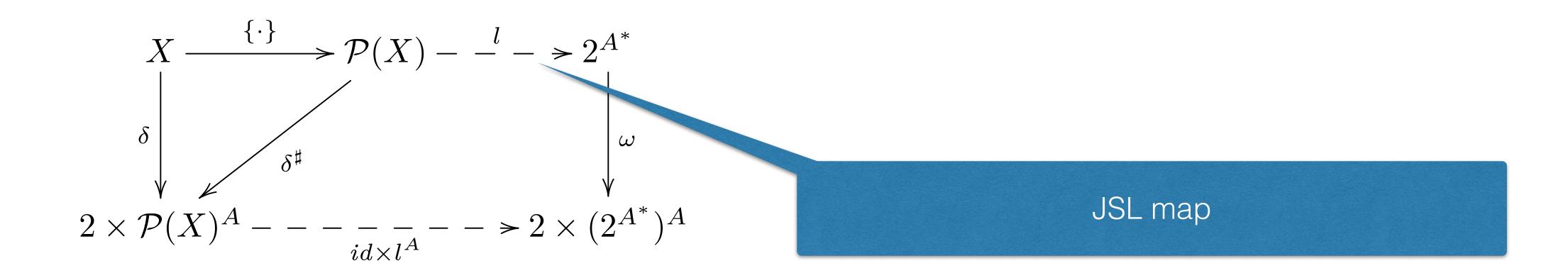
$$2 \times \mathcal{P}(X)^A - - - \stackrel{l}{-} \stackrel{l}{-} \rightarrow 2 \times (2^{A^*})^A$$

Generalised powerset construction

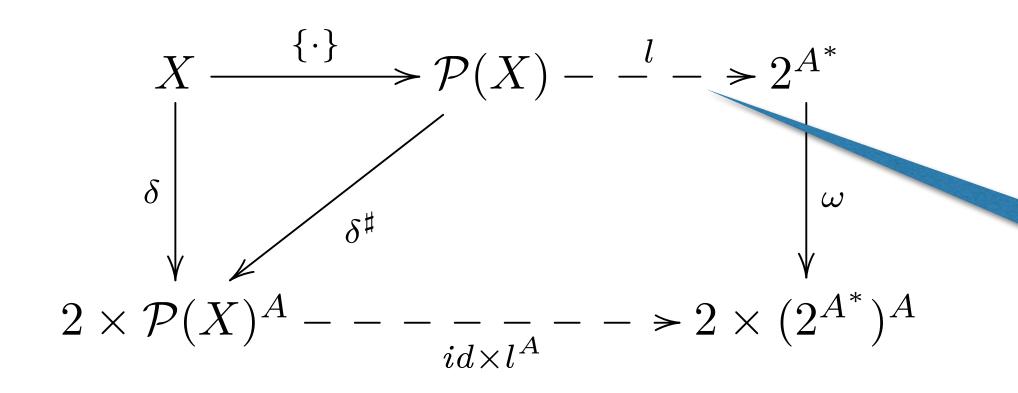


Other examples: partial, probabilistic, and weighted automata

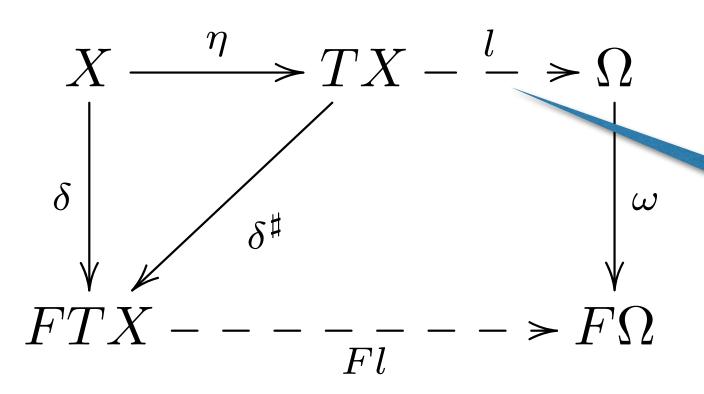
Rich algebraic structure



Rich algebraic structure

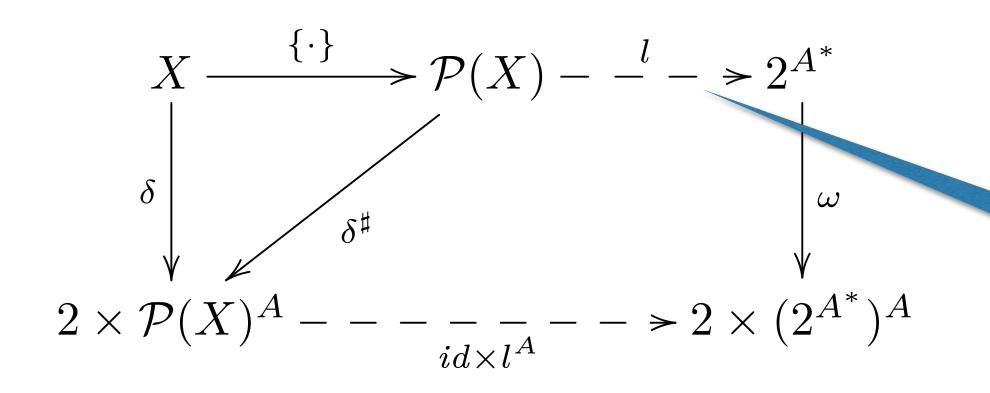


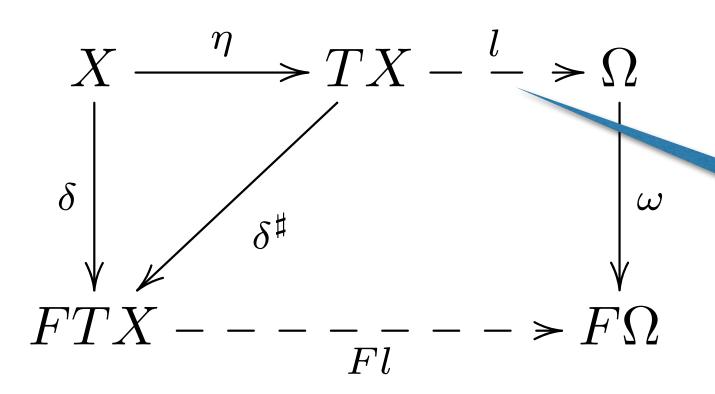
JSL map



T-algebra map

Rich algebraic structure





T-algebras

R[−] Vector Spaces

 \mathbb{S}^- Semimodules

+ Pointed sets

 $\mathcal{D}(-)$ Convex sets

T-algebra map

Up-to techniques

Algebraic structure

Better Proof Techniques

Up-to techniques

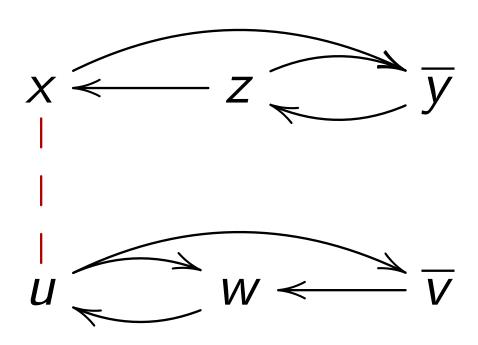
Algebraic structure

Better Proof Techniques

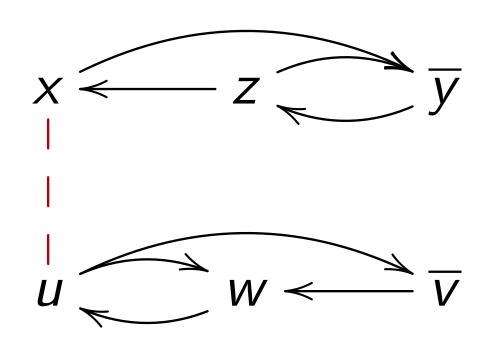


HKC algorithm - Bonchi and Pous 2014

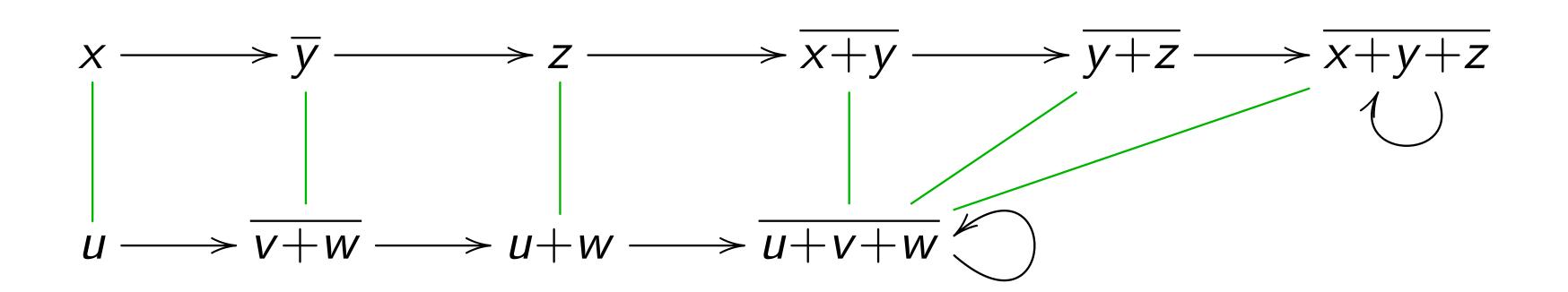
Example



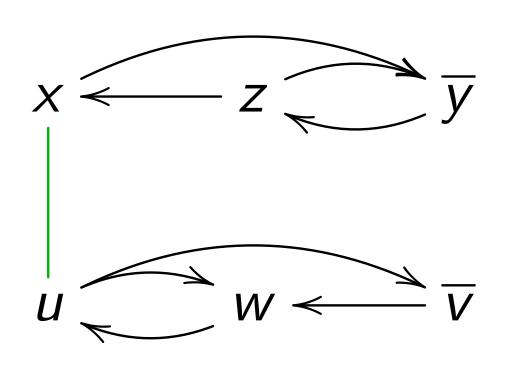
Example



Build a bisimulation using powerset construction on the fly

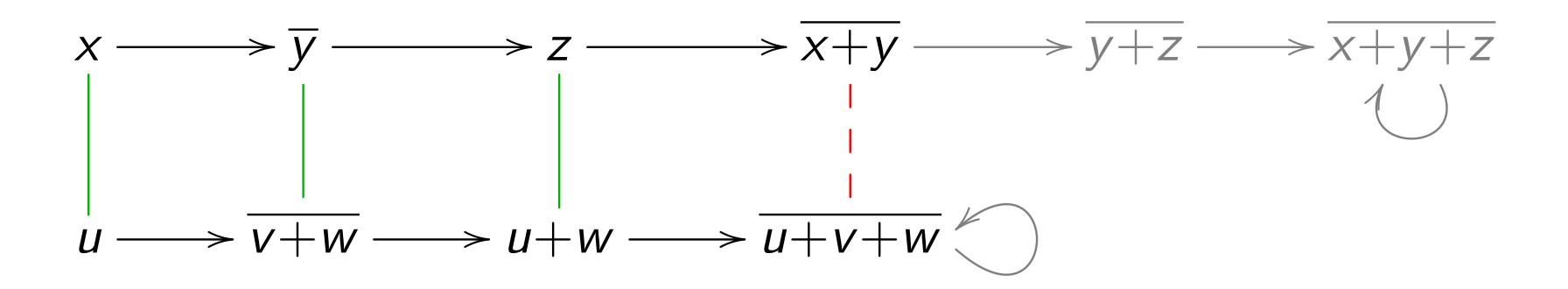


Example



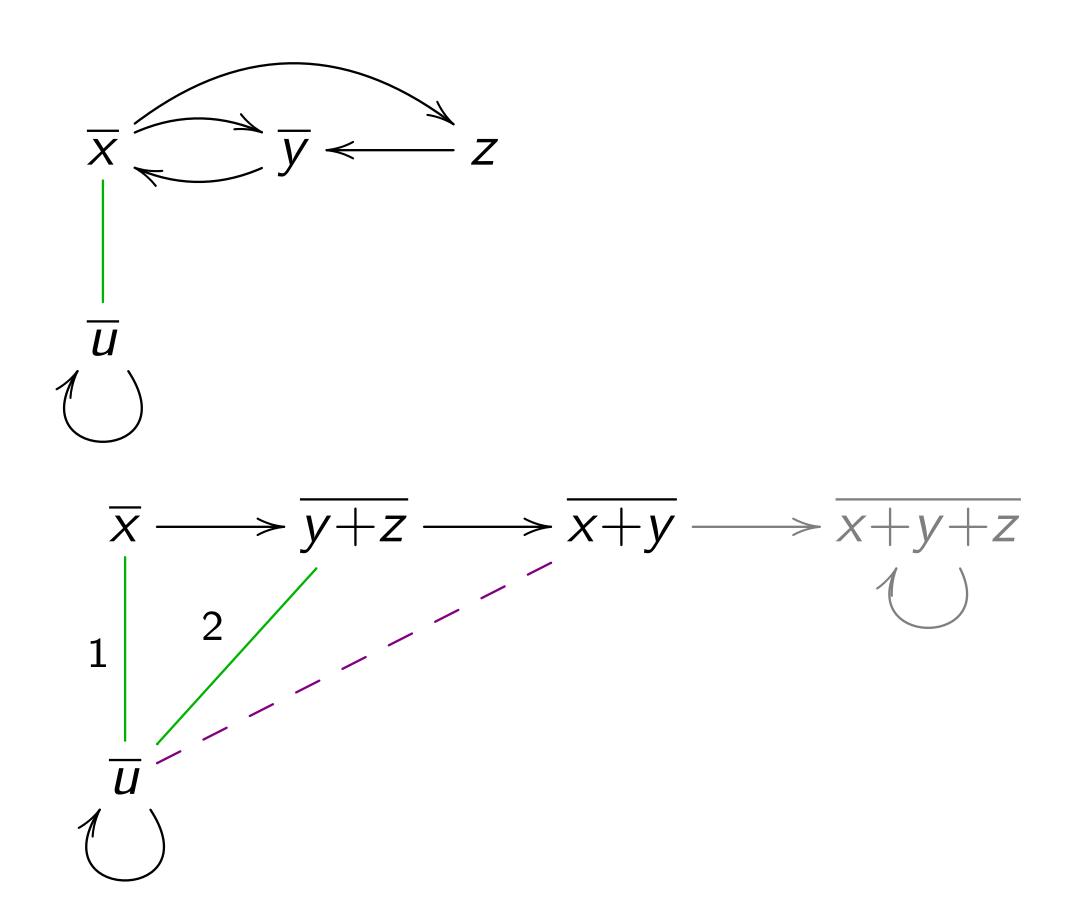
$$\frac{(x, u)}{+ (y, v+w)}$$

$$= (x+y, u+v+w)$$

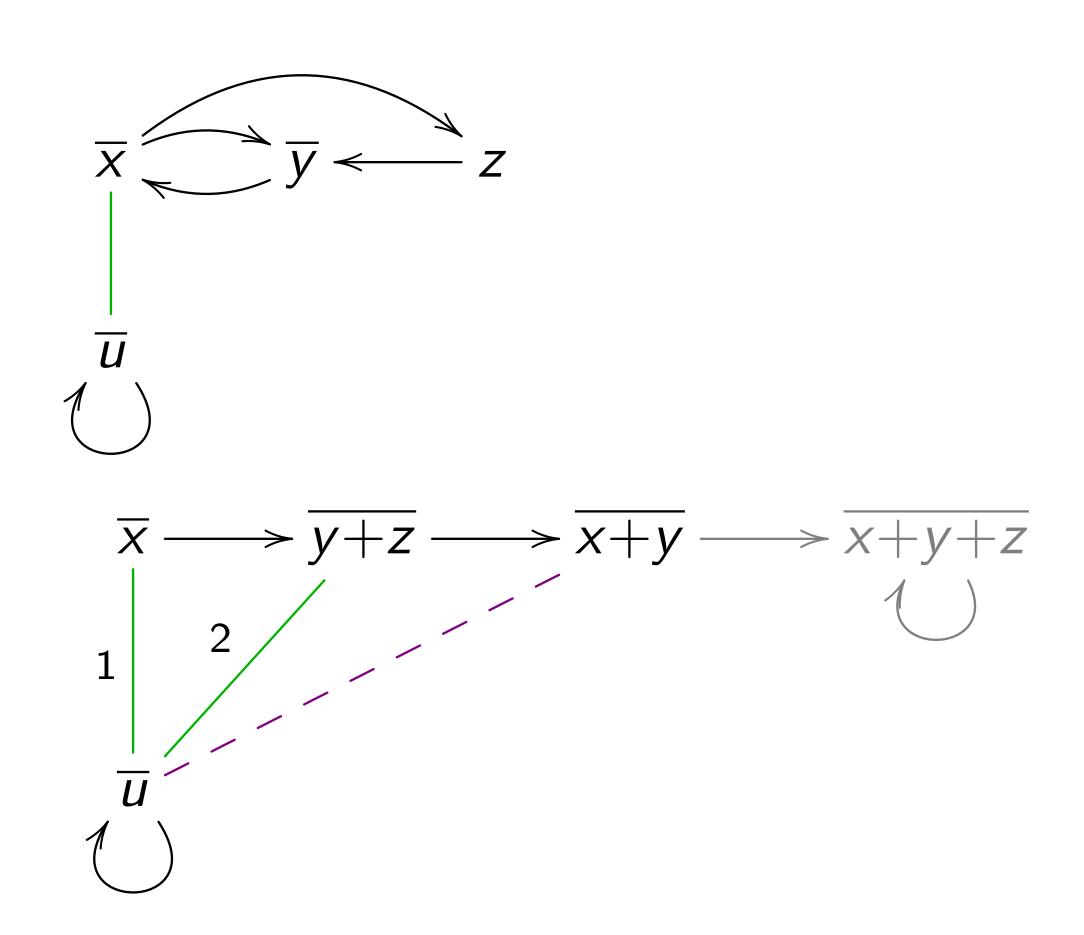


using bisimulations up to union

Another example



Another example

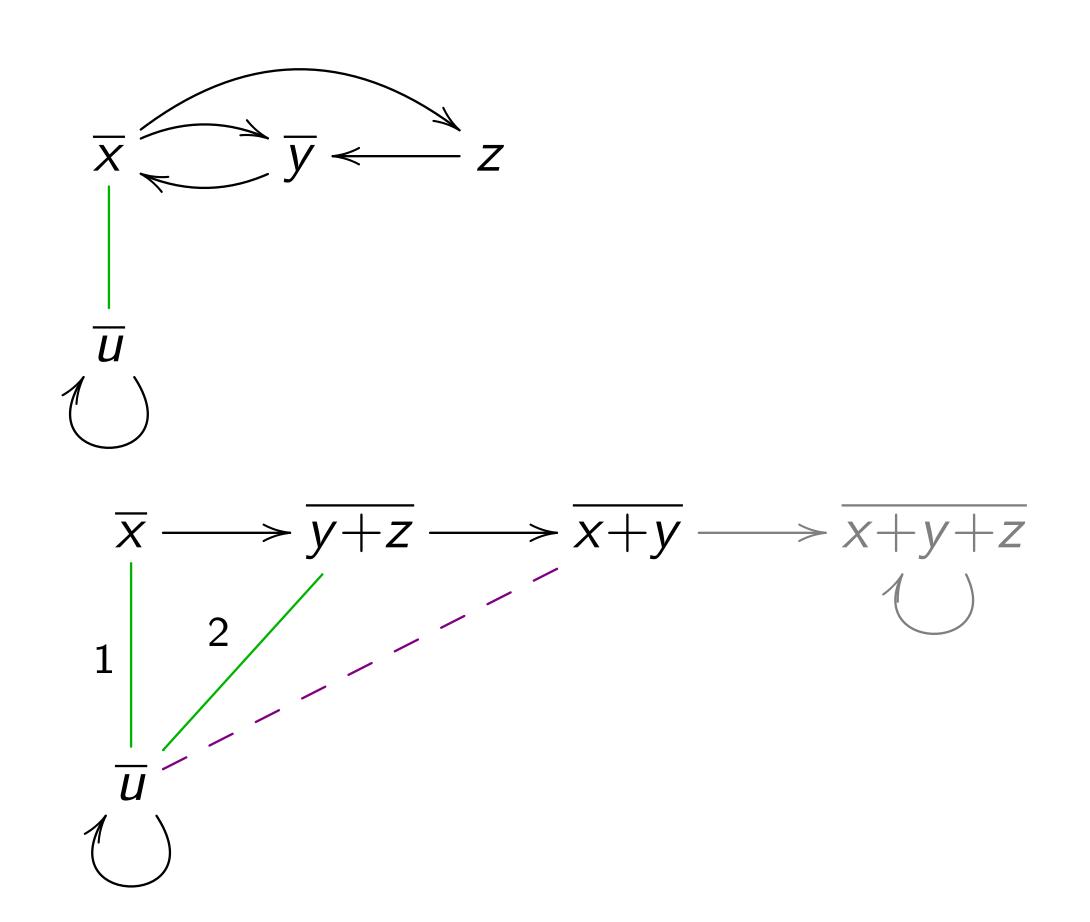


$$x+y = u+y \qquad (1)$$

$$= y+z+y \qquad (2)$$

$$= y+z \qquad (2)$$

Another example



$$x+y = u+y \qquad (1)$$

$$= y+z+y \qquad (2)$$

$$= y+z \qquad (2)$$

$$= u \qquad (2)$$

Bisimulations up-to **congruence** HKC algorithm of Bonchi&Pous

More examples

Up-To Techniques for Weighted Systems. (TACAS '17)

Filippo Bonchi, Barbara König, Sebastian Küpper

The Power of Convex Algebras (under submission)

Filippo Bonchi, Alexandra Silva, Ana Sokolova

Coinduction up-to in a fibrational setting (CSL-LICS 2014)

Filippo Bonchi, Daniela Petrisan, Damien Pous, Jurriaan Rot

What about succinct acceptors?

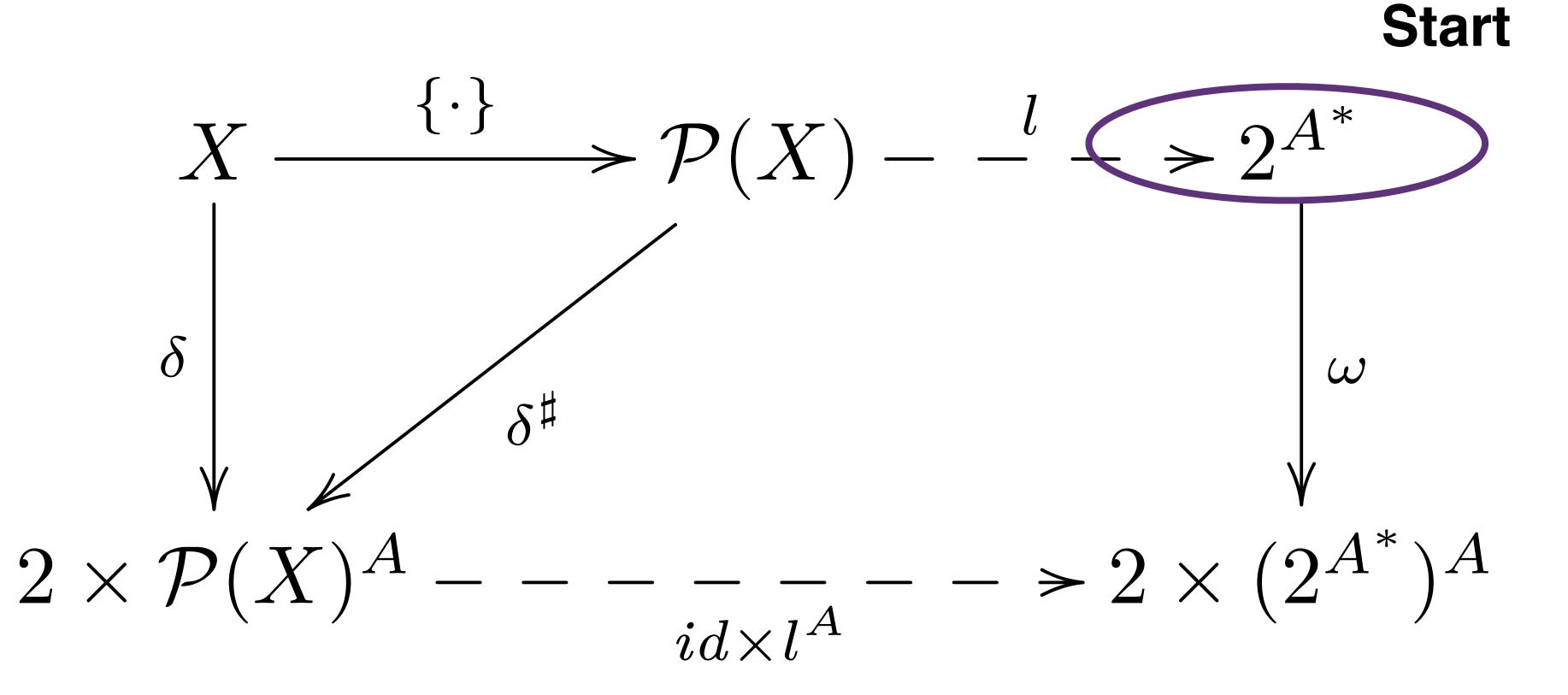
Goal

$$X \xrightarrow{\{\cdot\}} \mathcal{P}(X) - \stackrel{l}{-} \rightarrow 2^{A^*}$$

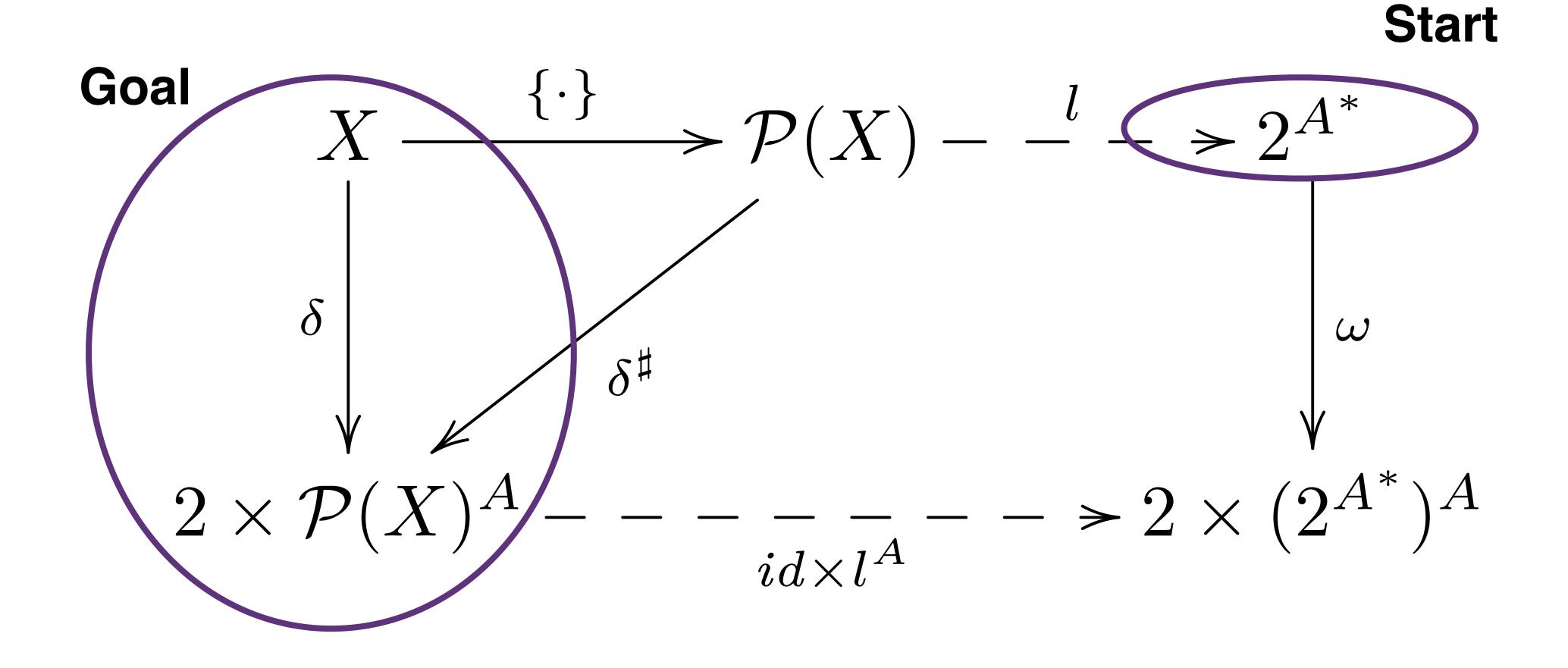
$$\delta \downarrow \qquad \qquad \downarrow \omega$$

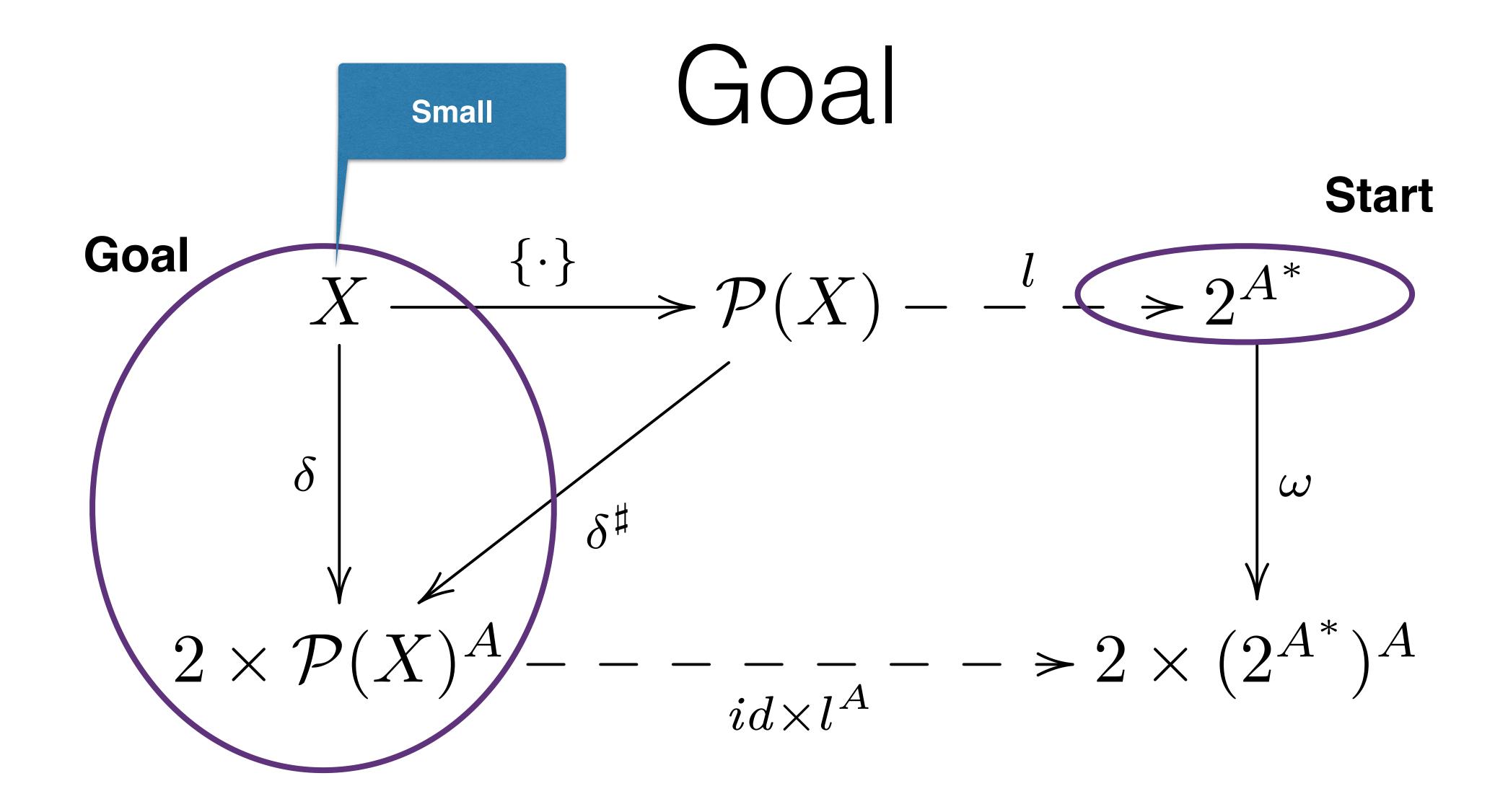
$$2 \times \mathcal{P}(X)^A - - - \stackrel{l}{-} \stackrel{l}{-} \rightarrow 2 \times (2^{A^*})^A$$

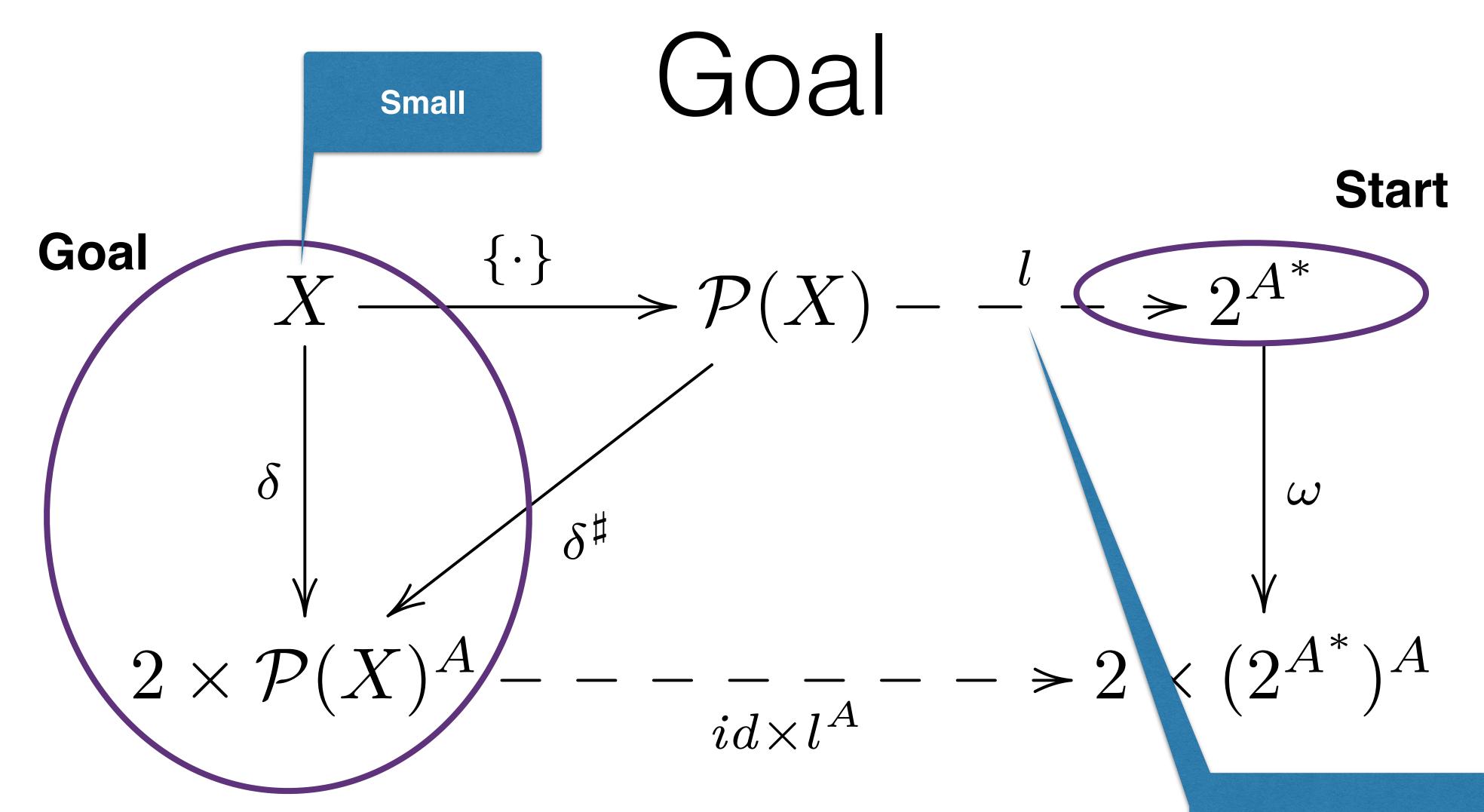
Goal



Goal



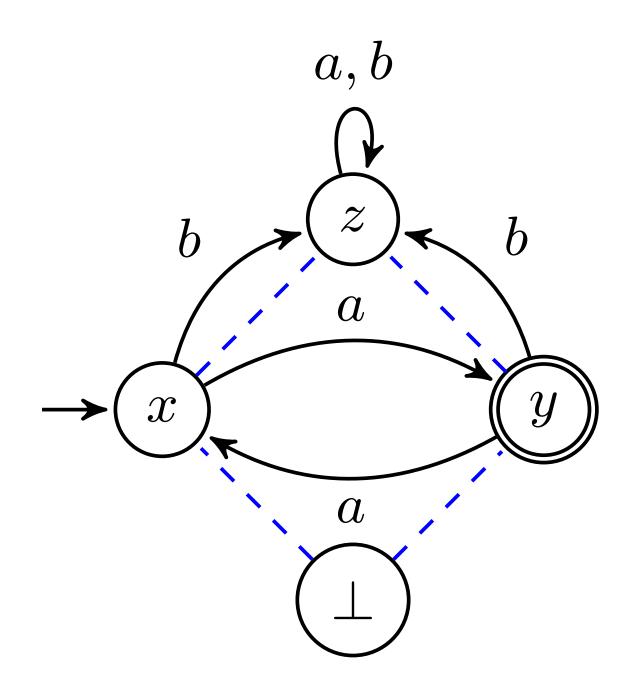




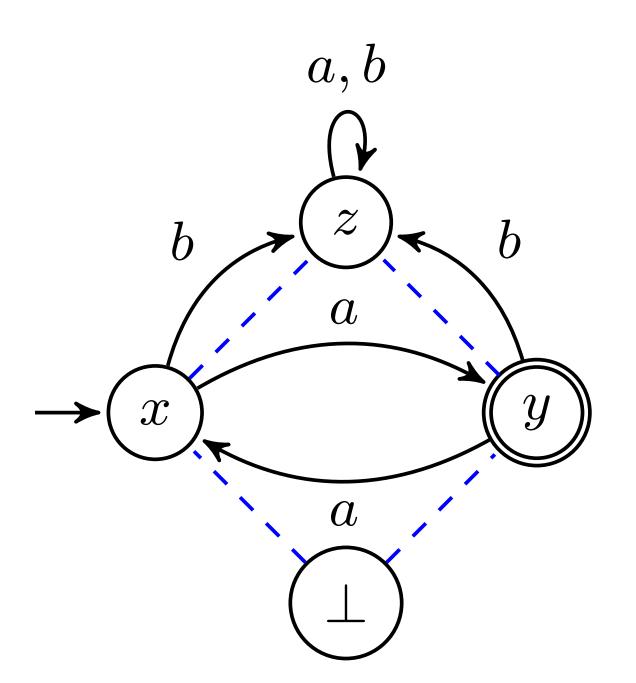
Exploit the algebraic structure!!

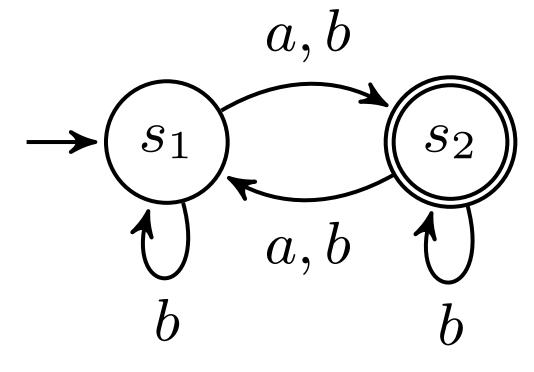
$$\mathcal{L} = \{ w \in \{a, b\}^* \mid |w|_a \text{ is odd} \}$$

$$\mathcal{L} = \{ w \in \{a, b\}^* \mid |w|_a \text{ is odd} \}$$

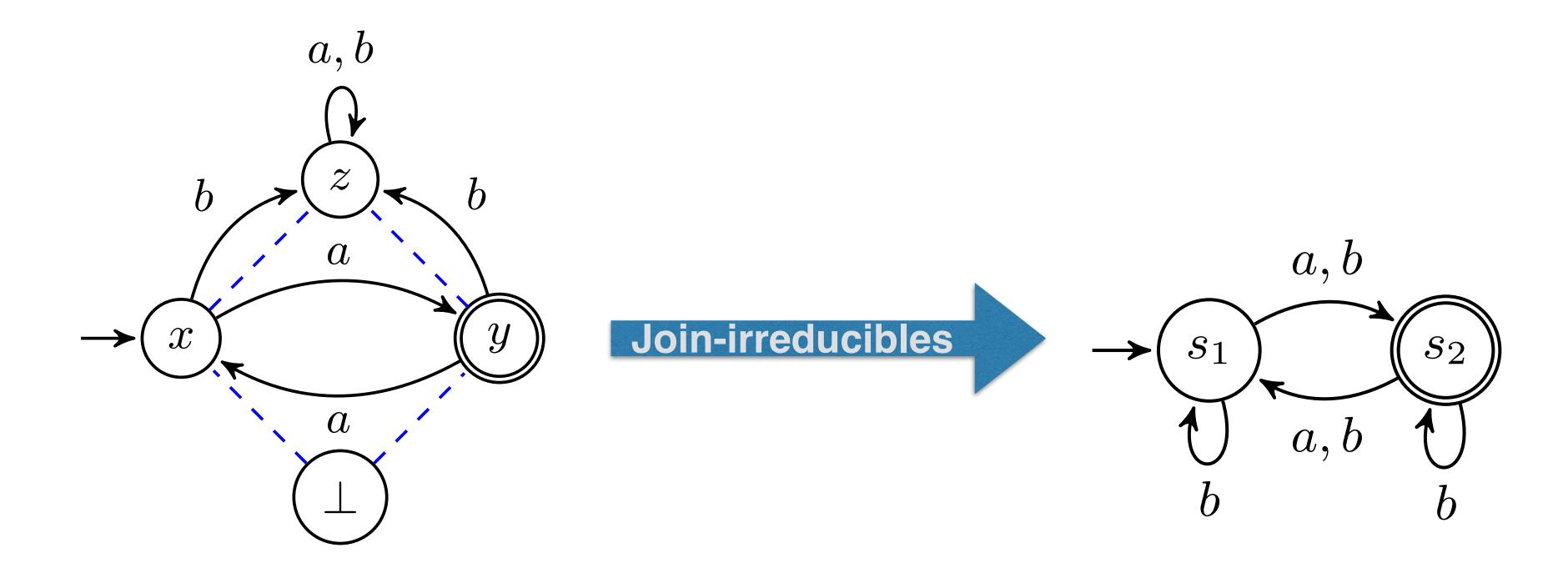


$$\mathcal{L} = \{ w \in \{a, b\}^* \mid |w|_a \text{ is odd} \}$$





$$\mathcal{L} = \{ w \in \{a, b\}^* \mid |w|_a \text{ is odd} \}$$



What else can we do?

Languages are much richer algebraically — CABA & DL

$$\mathcal{L} = \Sigma^* a a \Sigma^* \cap \Sigma^* b b \Sigma^*$$

What else can we do?

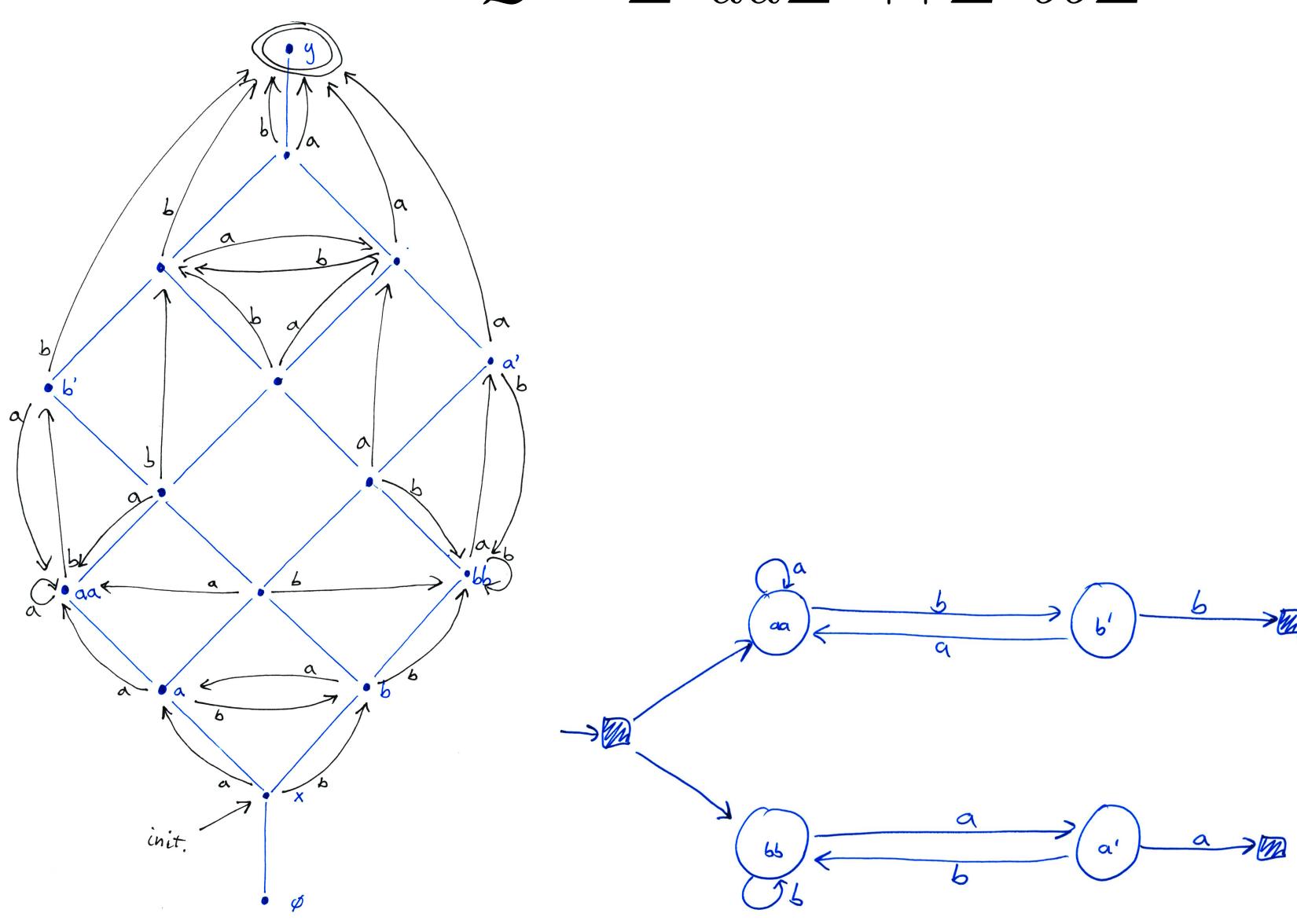
Languages are much richer algebraically — CABA & DL

Brzozowski's atomaton

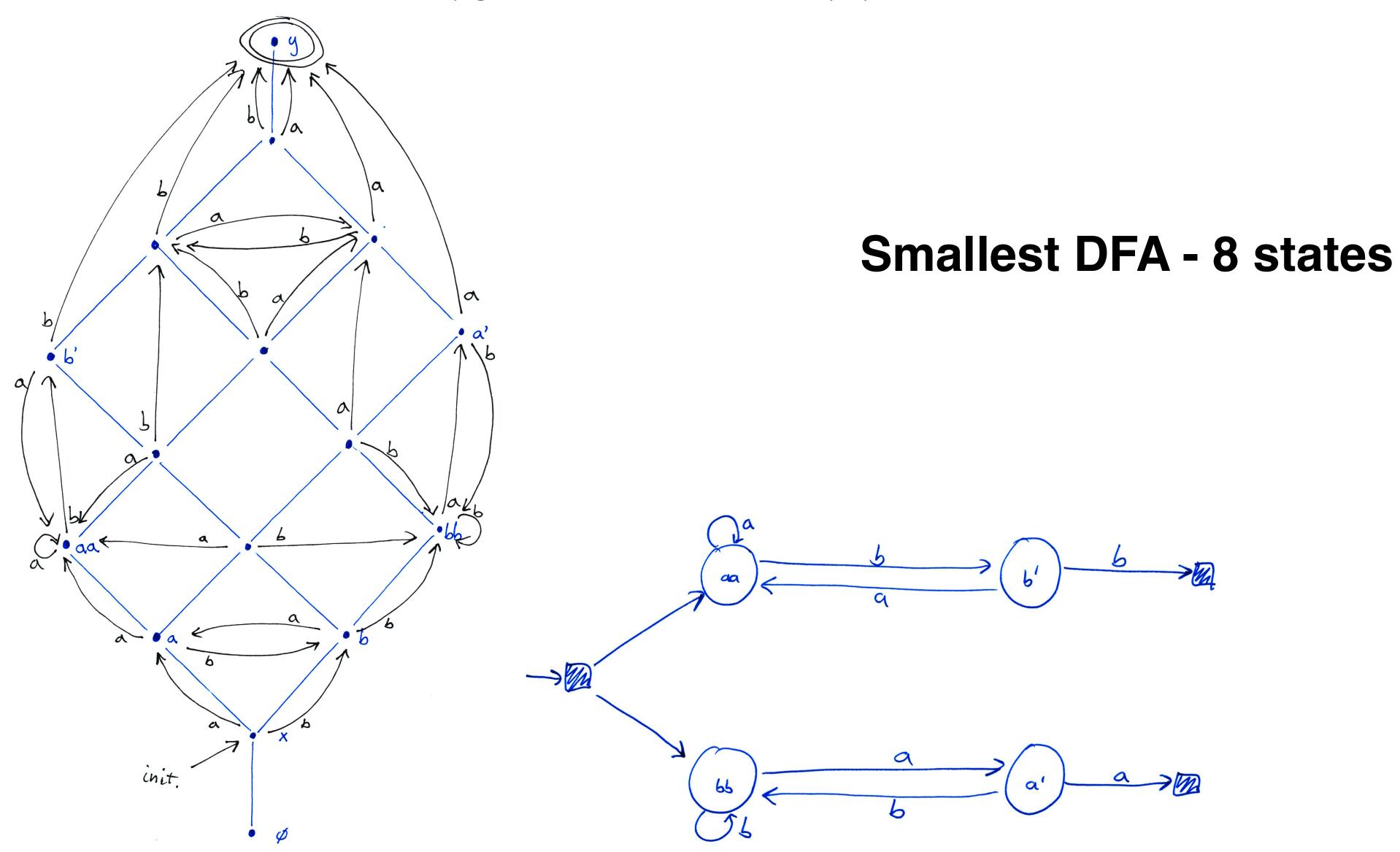
Alternating automaton

$$\mathcal{L} = \Sigma^* a a \Sigma^* \cap \Sigma^* b b \Sigma^*$$

$$\mathcal{L} = \Sigma^* a a \Sigma^* \cap \Sigma^* b b \Sigma^*$$



$$\mathcal{L} = \Sigma^* a a \Sigma^* \cap \Sigma^* b b \Sigma^*$$



Weighted languages

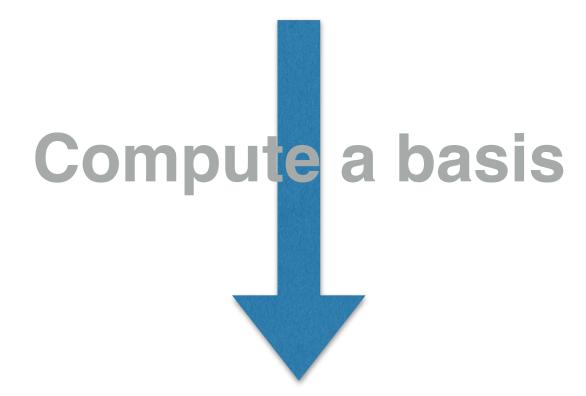
$$\mathcal{L} = \left\{ \begin{array}{l} \varepsilon \mapsto 1 \\ (aa)^n \mapsto 2^n \end{array} \right.$$

Infinite Moore automaton in **Vect**

Weighted languages

$$\mathcal{L} = \left\{ \begin{array}{l} \varepsilon \mapsto 1 \\ (aa)^n \mapsto 2^n \end{array} \right.$$

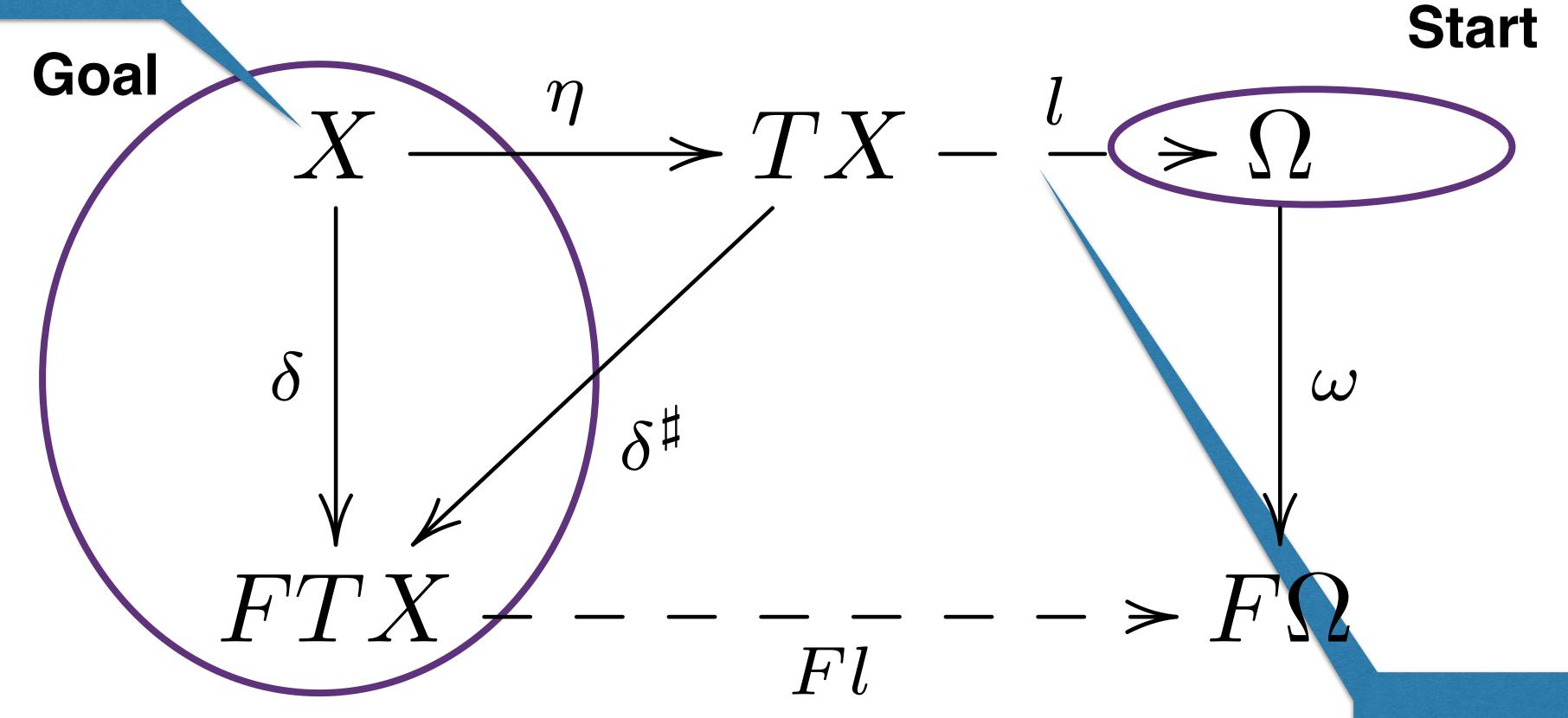
Infinite Moore automaton in **Vect**



Finite Weighted automaton

General Picture

Small



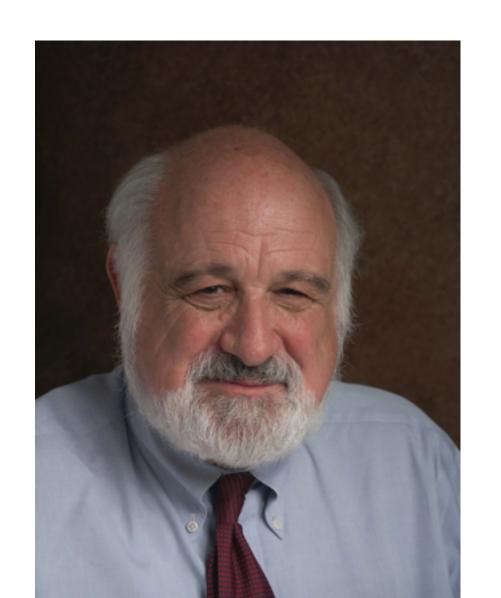
Exploit the T-algebraic structure!!

What have we gained

A general picture to understand reverse determinization

What have we gained

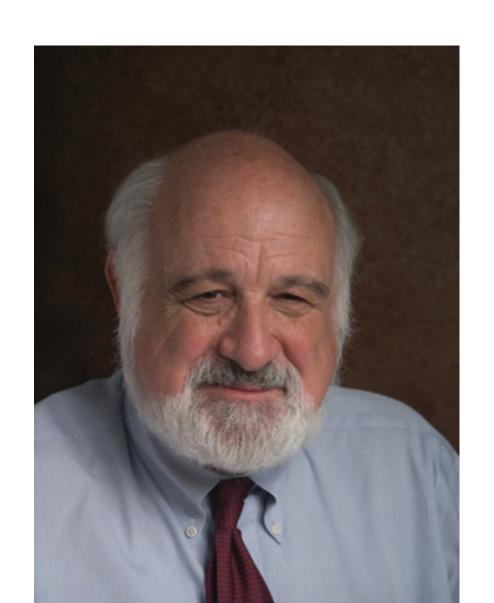
A general picture to understand reverse determinization



Fuzzy machines

What have not we gained

A general picture to understand reverse determinization

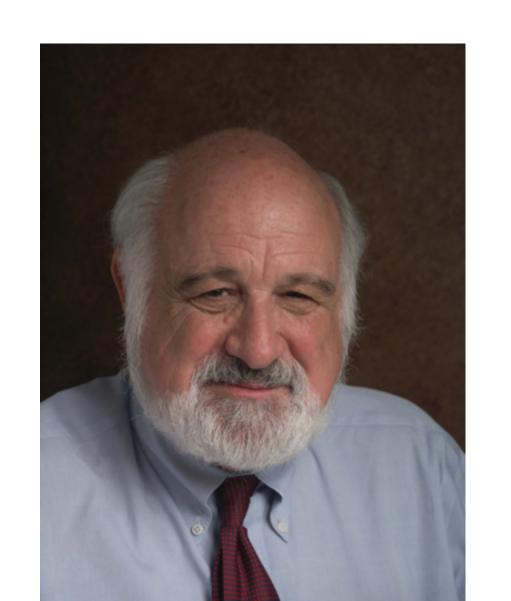


Fuzzy machines

What have not we gained

A general picture to understand reverse determinization

An algorithm to compute the *generators*

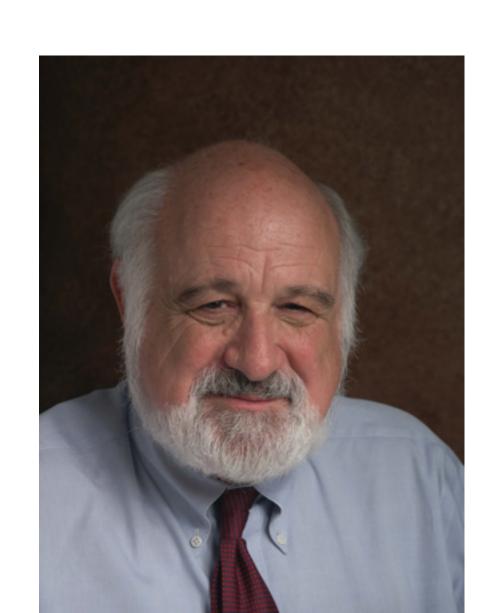


Fuzzy machines

What have not we gained

A general picture to understand reverse determinization Not immediate — ad-hoc general algorithm; efficient versions for specific instances

An algorithm to compute the *generators*



Fuzzy machines

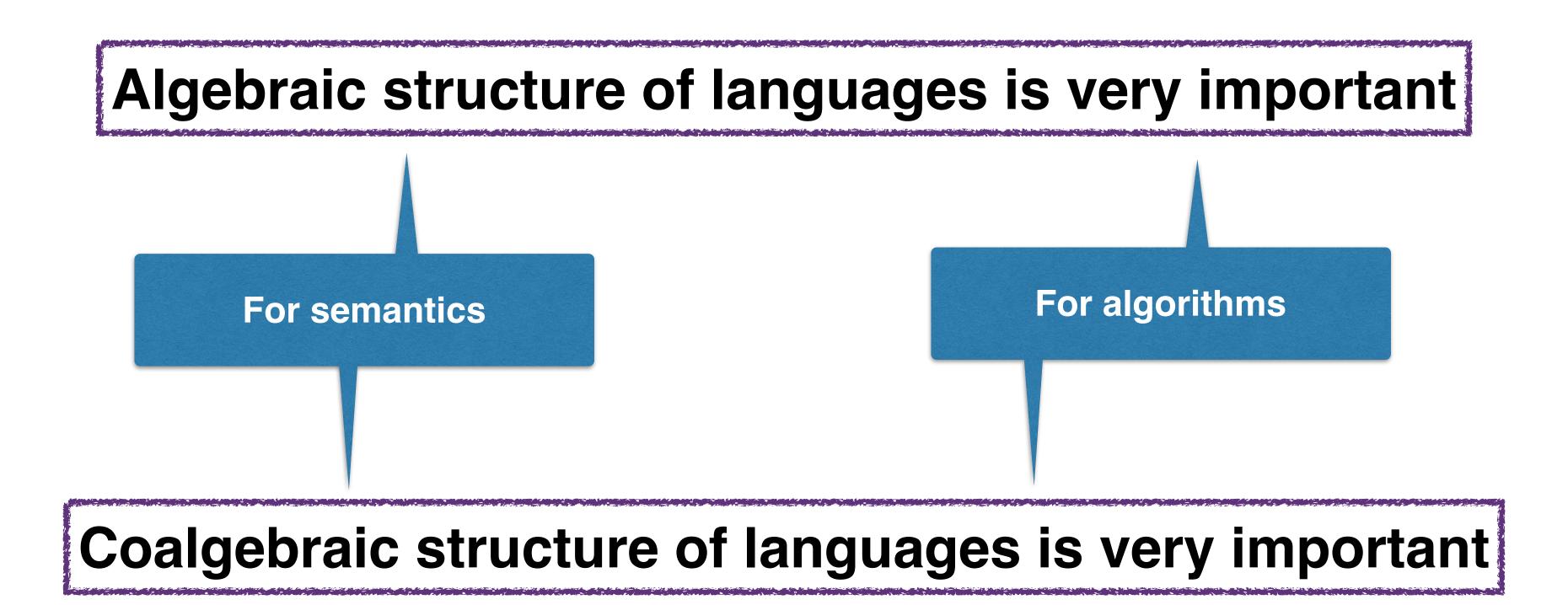
Conclusions

Algebraic structure of languages is very important

For semantics

For algorithms

Conclusions



Questions?

