

calf-project.org

Categorical Automata Learning Framework

Alexandra Silva University College London

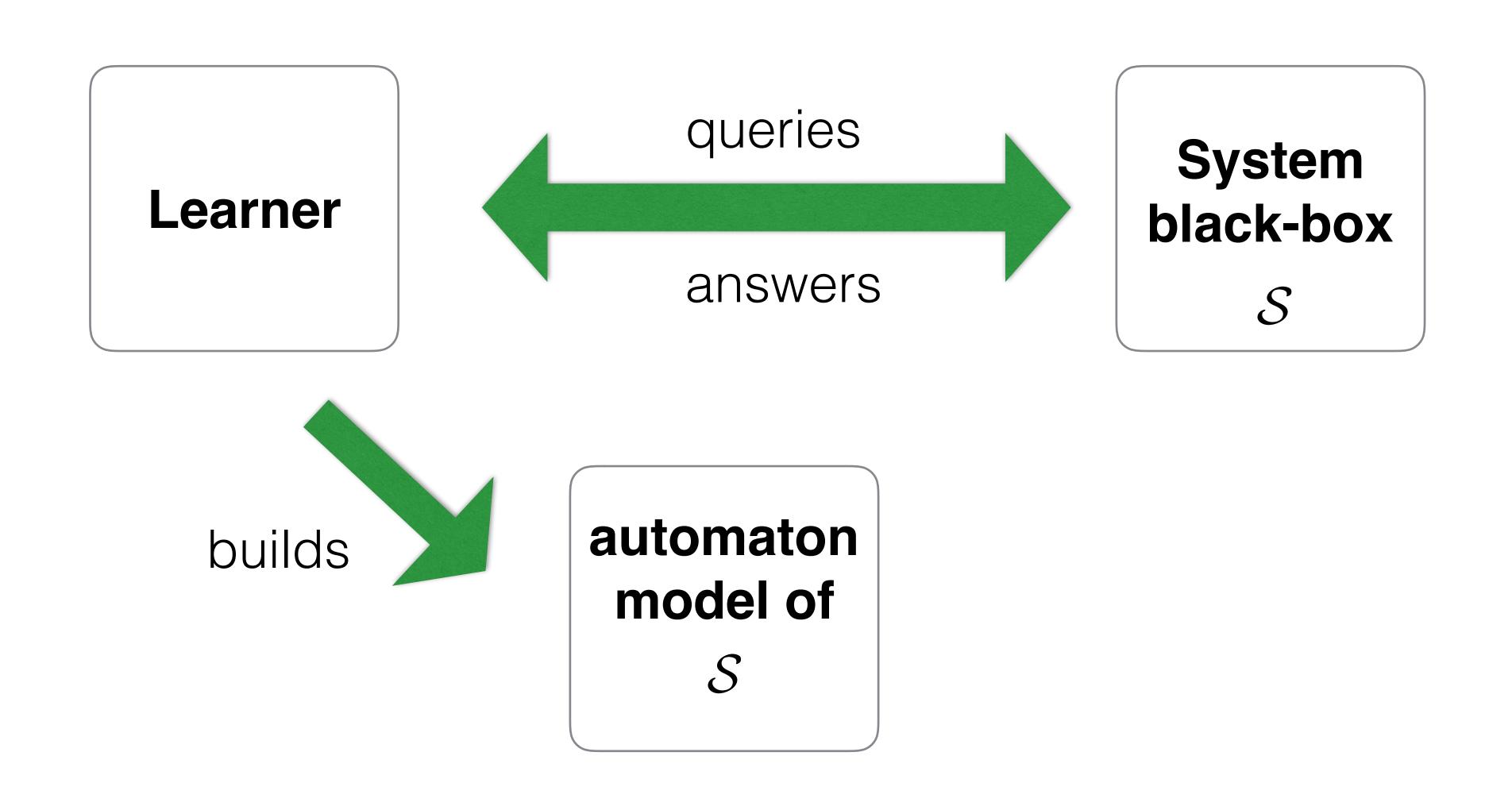
Matteo Sammartino **UCL**

Gerco van Heerdt **UCL**

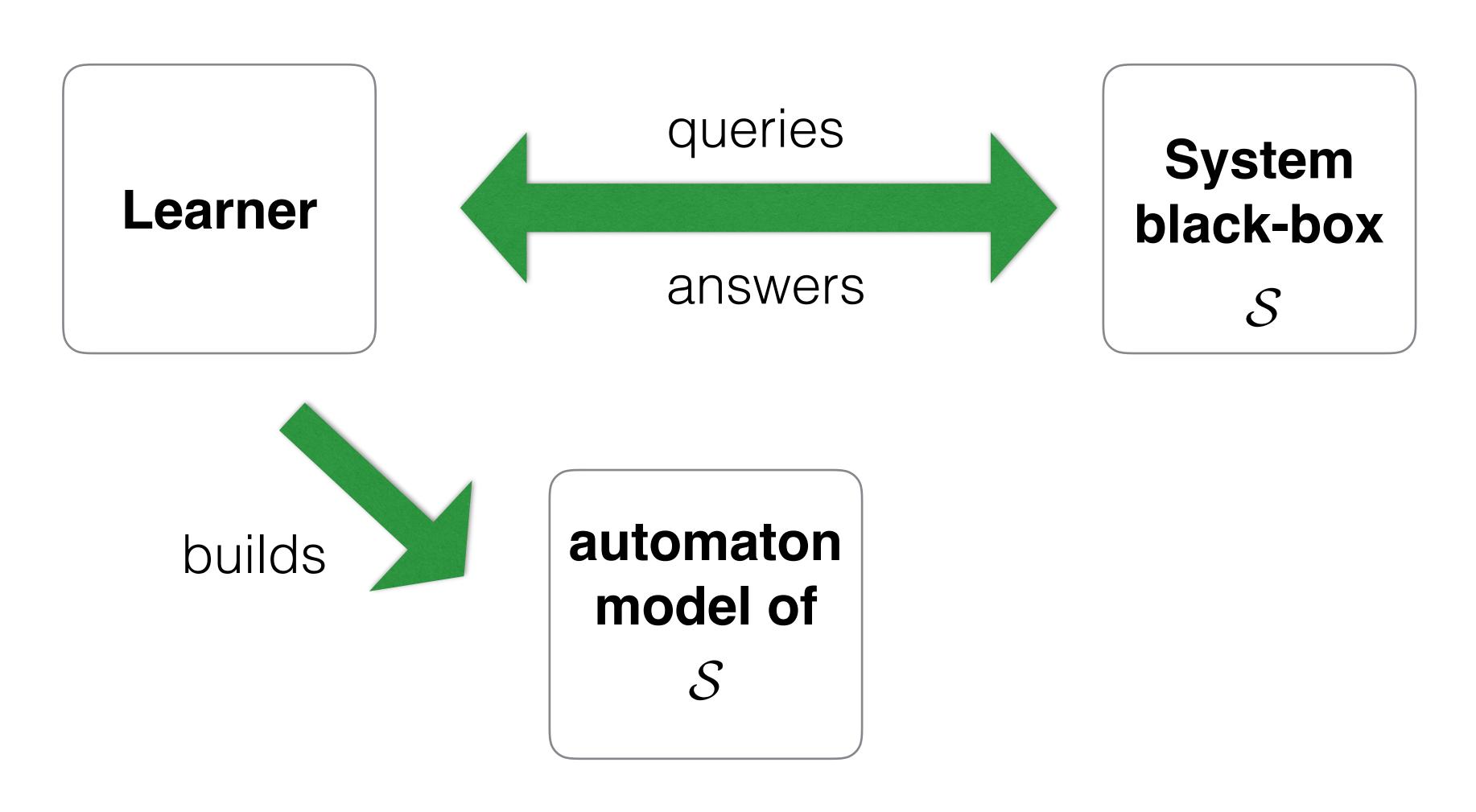
Joshua Moerman Radboud University

Maverick Chardet **ENS Lyon**

Automata learning



Automata learning



No formal specification available? Learn it!

Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^\star$

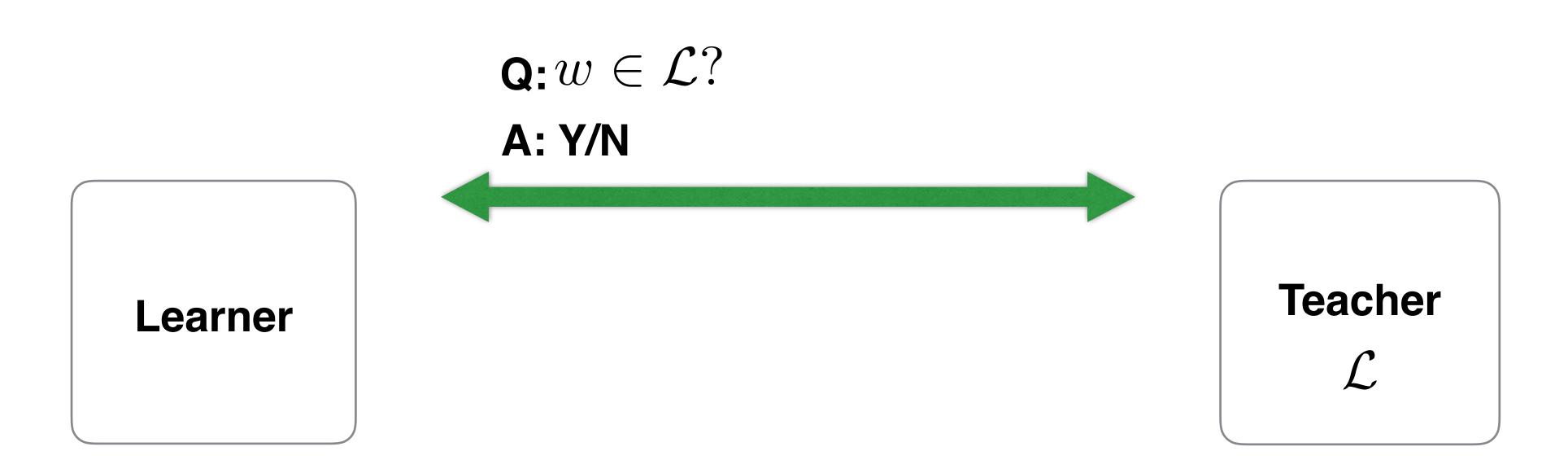
Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^*$

Learner

Teacher

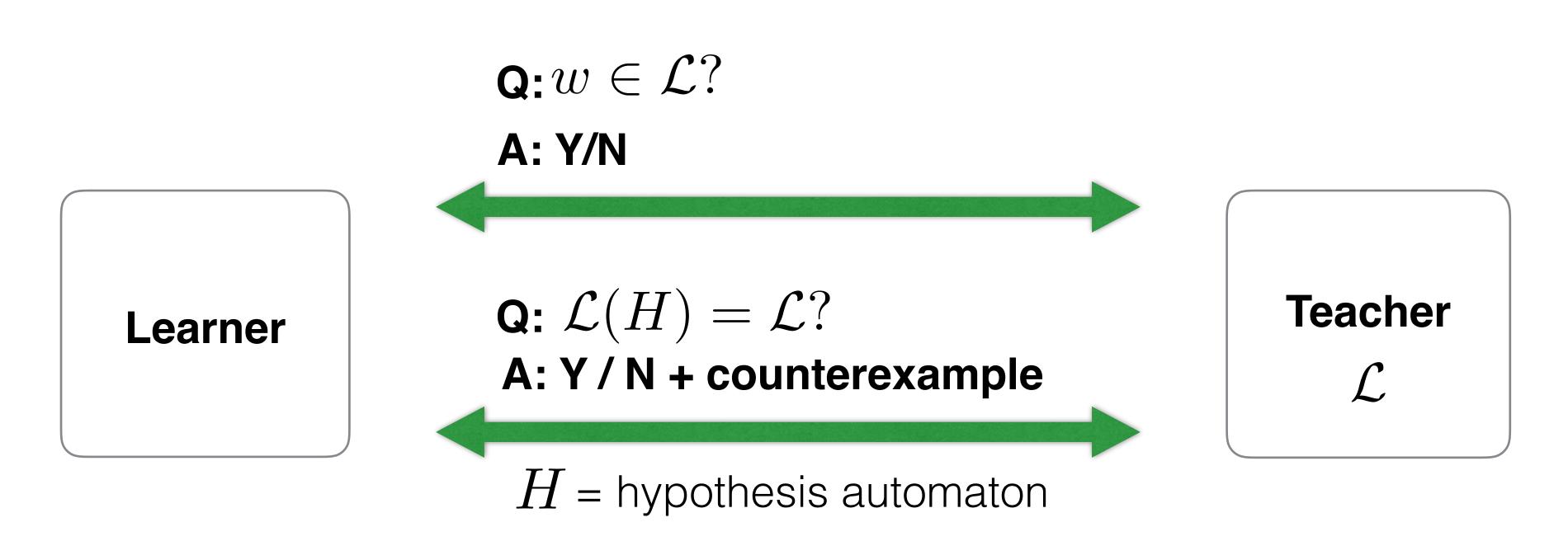
 \mathcal{L}

Finite alphabet of system's actions A set of system behaviors is a regular language $\mathcal{L} \subseteq A^{\star}$



Finite alphabet of system's actions A

set of system behaviors is a **regular language** $\mathcal{L} \subseteq A^*$



Finite alphabet of system's actions A

set of system behaviors is a **regular language** $\mathcal{L} \subseteq A^*$

 $\mathbf{Q}: w \in \mathcal{L}$?

A: Y/N

Learner

Q: $\mathcal{L}(H) = \mathcal{L}$?

A: Y / N + counterexample

H = hypothesis automaton

builds

Minimal DFA accepting \mathcal{L}

Teacher

 \mathcal{L}

A zoo of automata

Probabilistic

Non-deterministic

Weighted

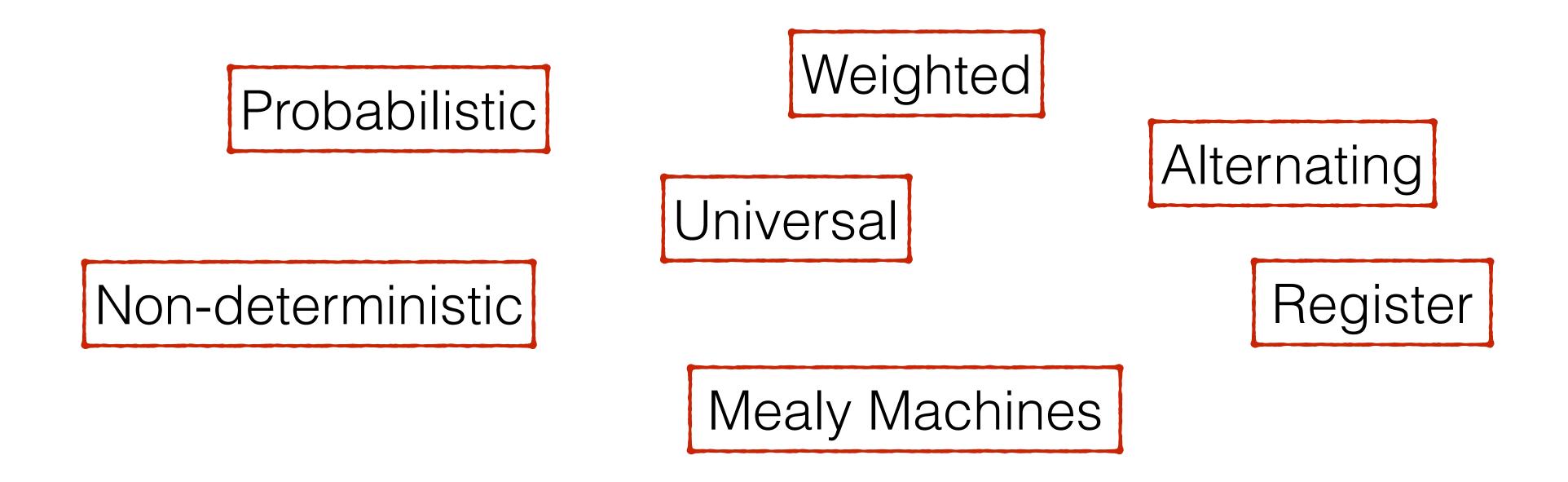
Universal

Alternating

Register

Mealy Machines

A zoo of automata

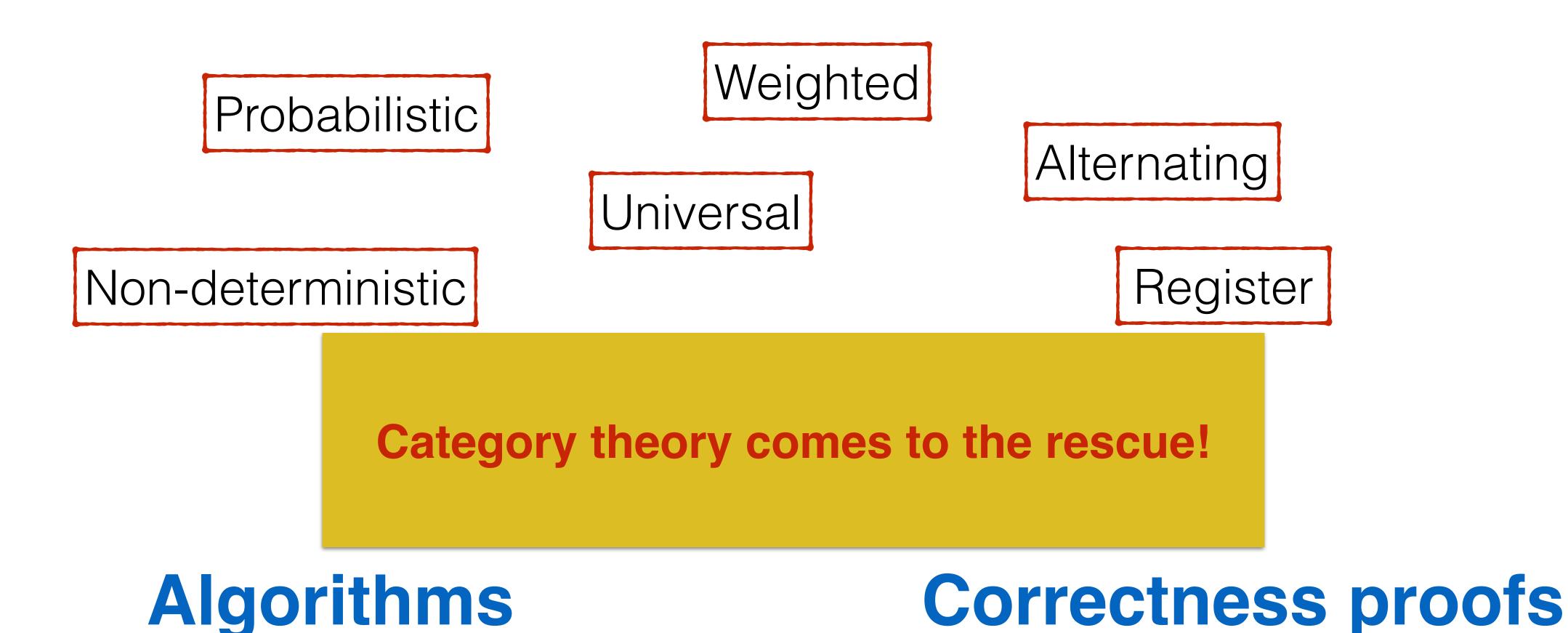


Algorithms

Correctness proofs

involved and hard to check

A zoo of automata



involved and hard to check

Category Theory

Conceptual tools

Correctness proof(s)

Guidelines new algorithms

Unveil connections

Category Theory

Conceptual tools

Correctness proof(s)

Guidelines new algorithms

Unveil connections

No free lunch!

Automata

$$X \rightarrow 2 \times X^A$$

DFA

Automata

$$X \to 2 \times X^A$$

$$X \to \mathbb{R} \times (\mathbb{R}^X)^A$$

DFA

WFA

Automata

$$X \to 2 \times X^A$$

$$X \to \mathbb{R} \times (\mathbb{R}^X)^A$$

DFA

WFA

$$X \rightarrow FTX$$

Algebraic properties

Transition structure

$$X o 2 imes X^A$$

$$X o \mathbb{R} imes (\mathbb{R}^X)^A$$
 DFA WFA

$$X \to 2 \times X^A$$

$$X \to \mathbb{R} \times (\mathbb{R}^X)^A$$

DFA

WFA

 2^{A^*}

acceptance

 \mathbb{R}^{A^*}

Vector space

 $X \to 2 \times X^A$

 $X \to \mathbb{R} \times (\mathbb{R}^X)^A$

DFA

WFA

 2^{A^*}

acceptance

 \mathbb{R}^{A^*}

Vector space

Language equivalence

equivalence

Weighted language equivalence **or** bisimilarity

$$X \to 2 \times X^A$$

 $X \to \mathbb{R} \times (\mathbb{R}^X)^A$

DFA

WFA

 2^{A^*}

acceptance

 \mathbb{R}^{A^*}

Vector space

Language equivalence

equivalence

Weighted language equivalence **or** bisimilarity

Proof methods for equivalence

Up-to techniques

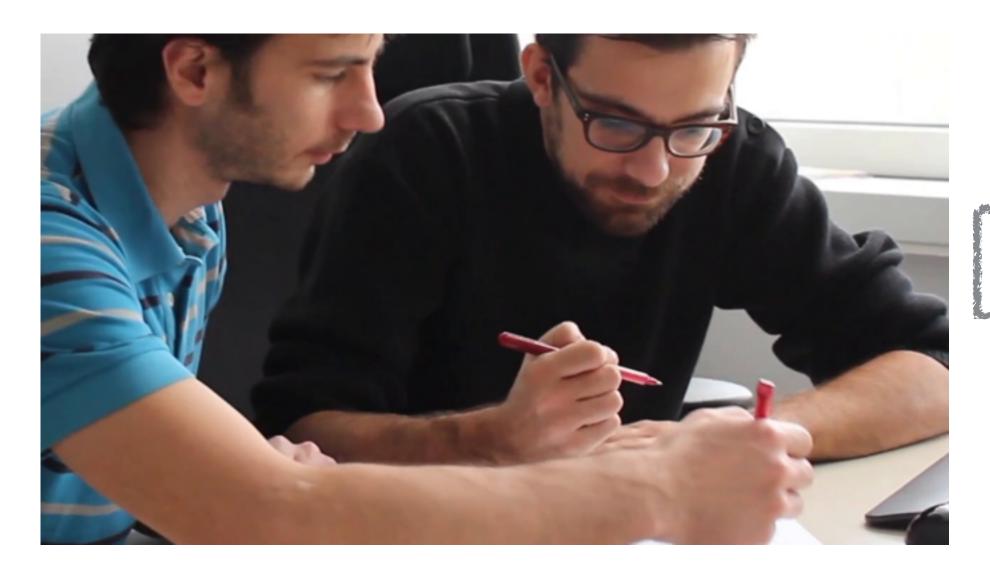
Algebraic structure

Better Proof Techniques

Up-to techniques

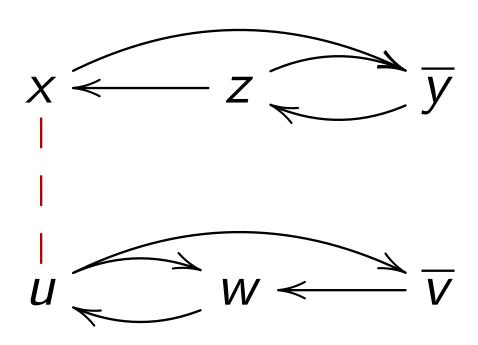
Algebraic structure

Better Proof Techniques

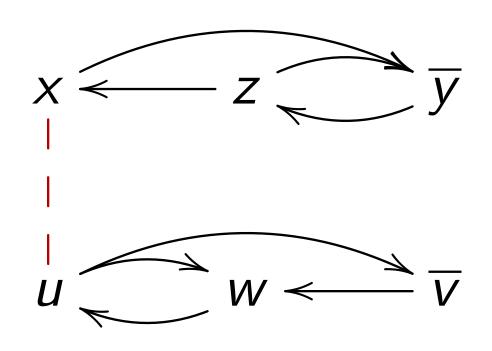


HKC algorithm - Bonchi and Pous 2014

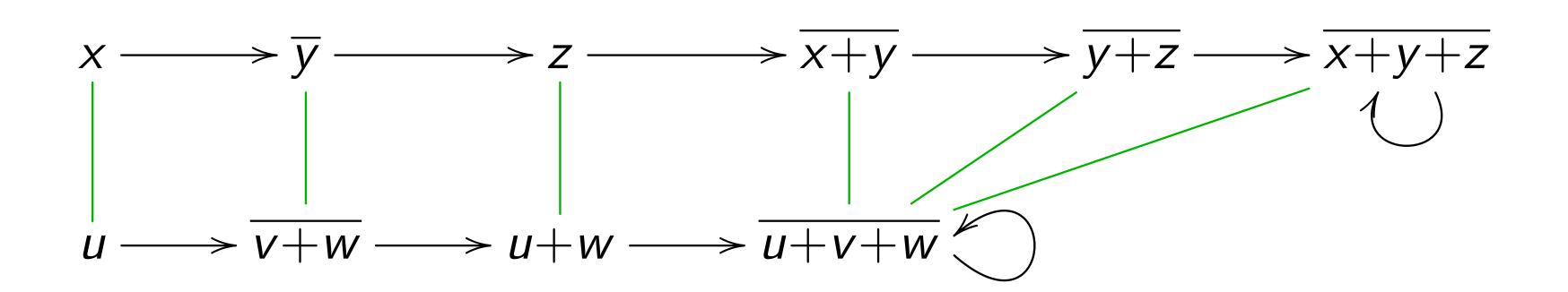
Example



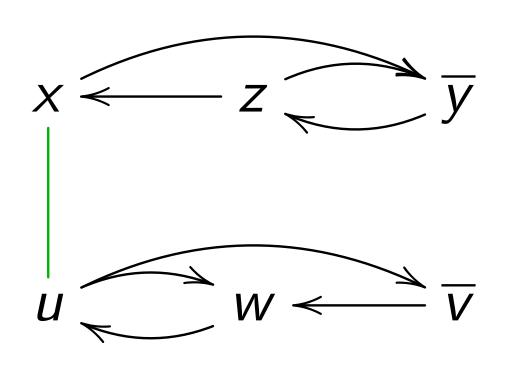
Example



Build a bisimulation using powerset construction on the fly

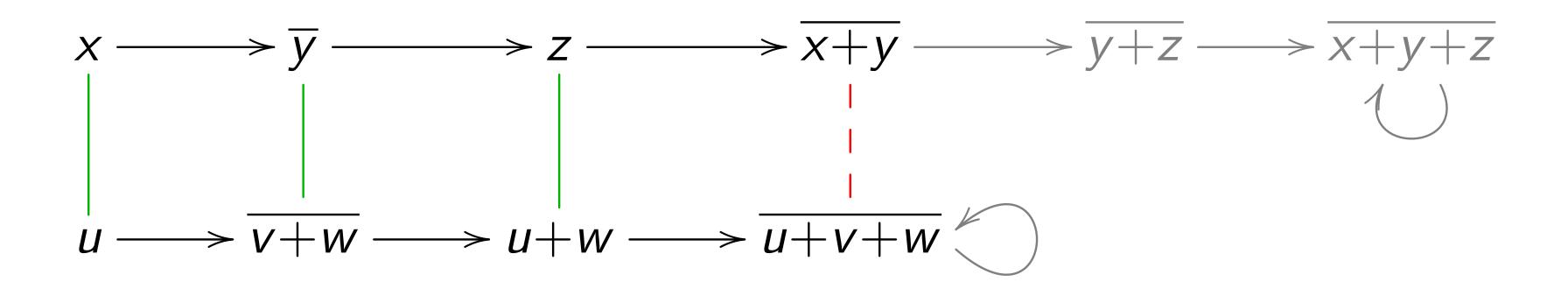


Example



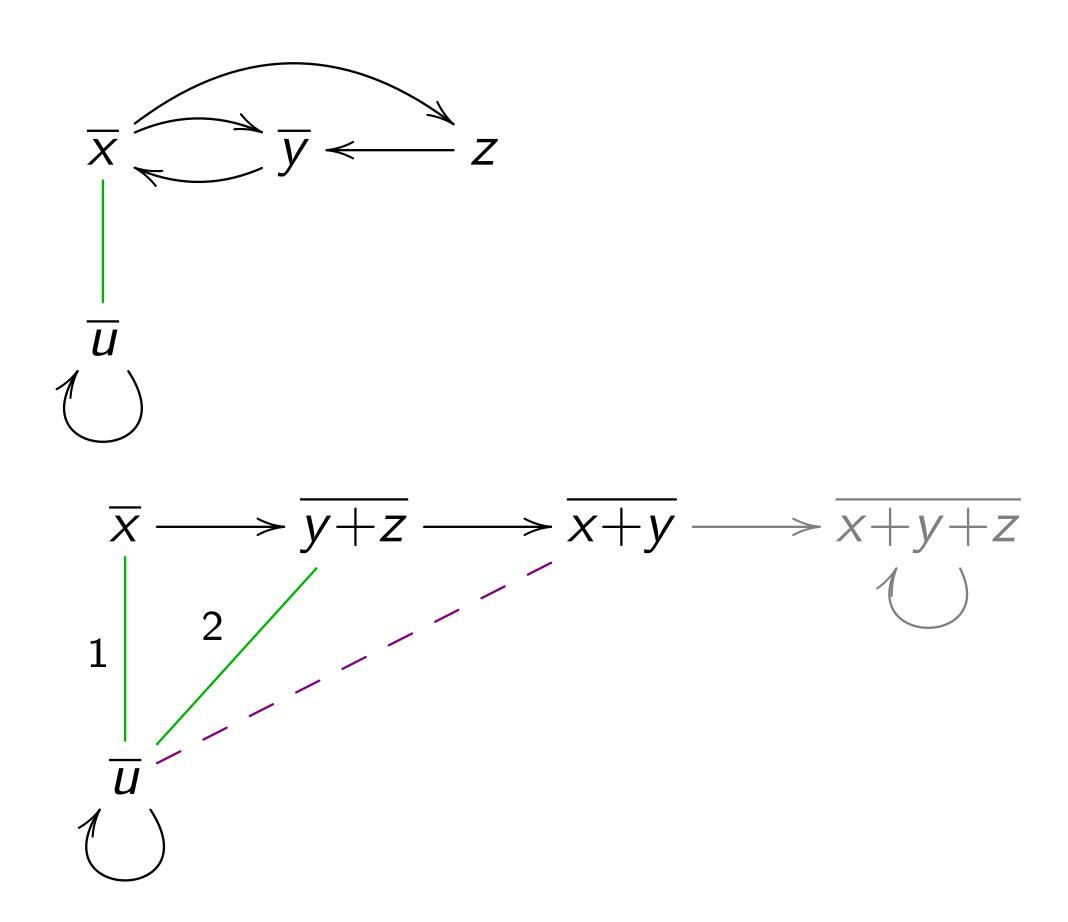
$$\frac{(x, u)}{+ (y, v+w)}$$

$$= (x+y, u+v+w)$$

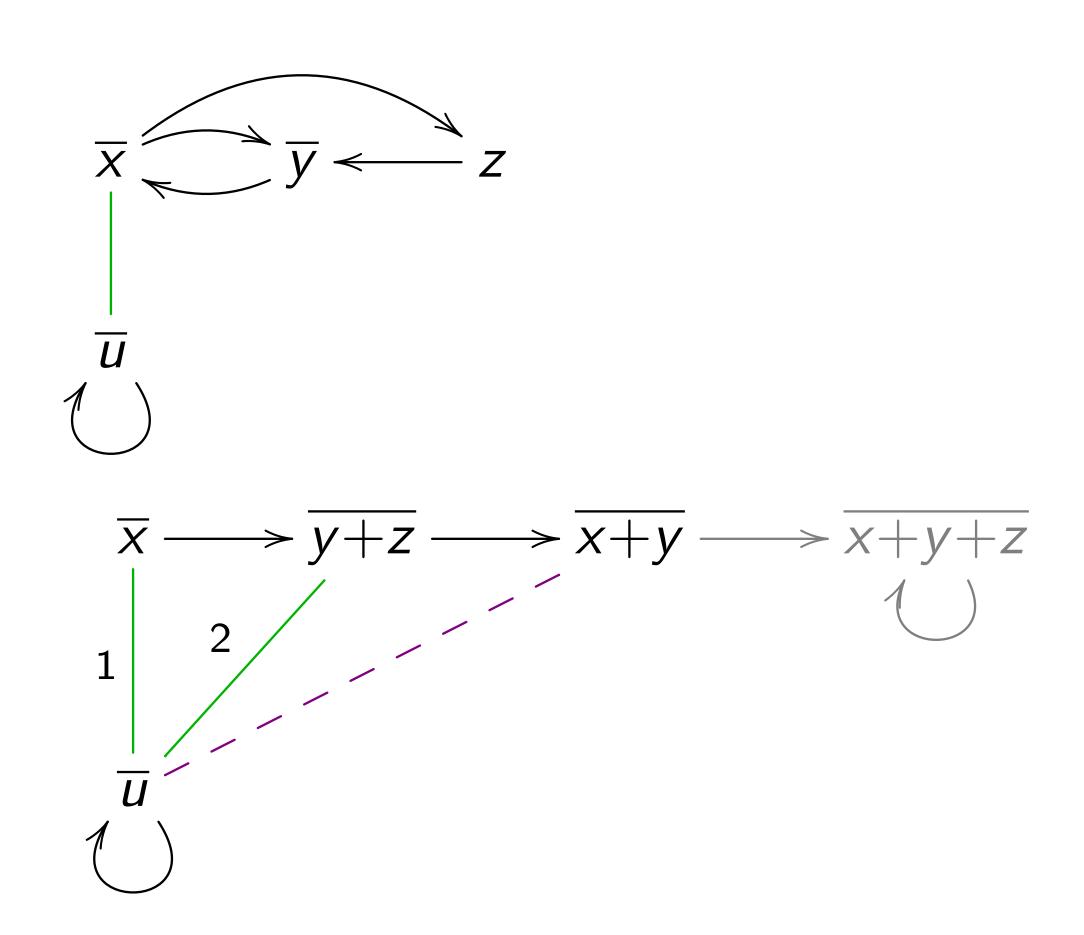


using bisimulations up to union

Another example



Another example

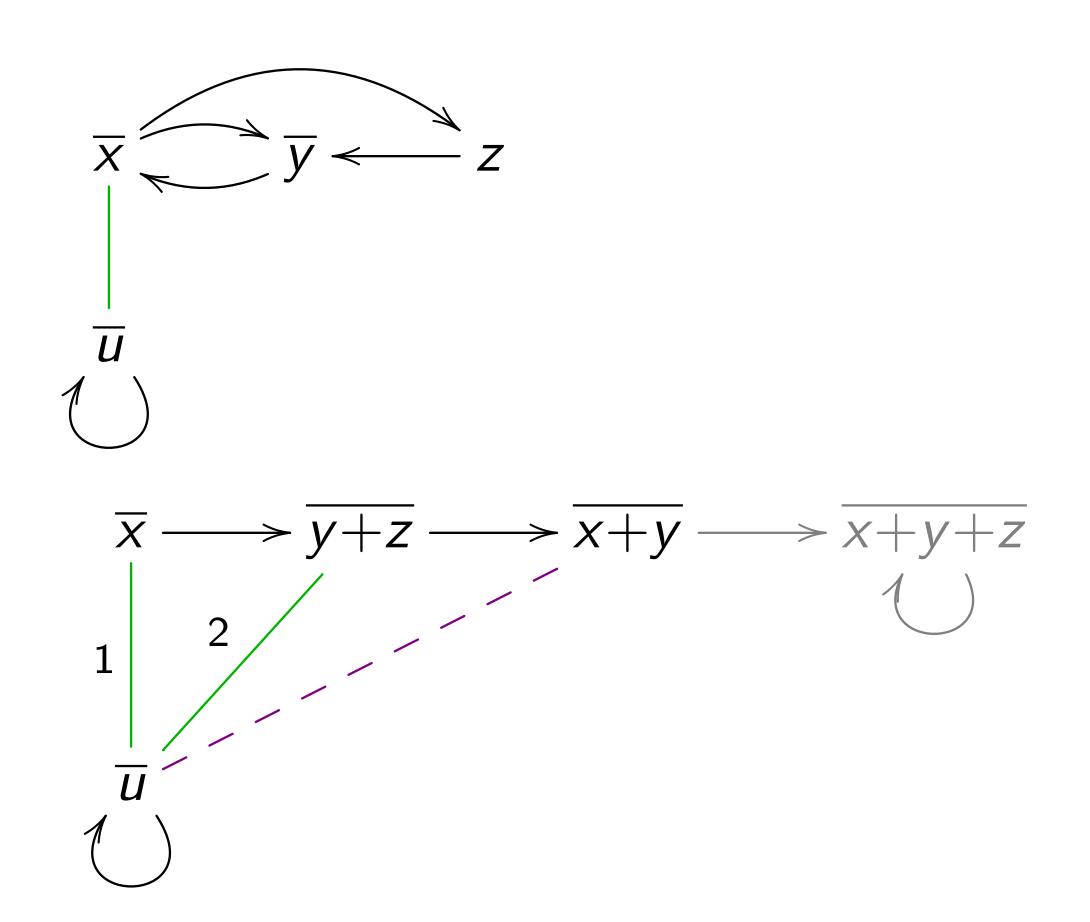


$$x+y = u+y \qquad (1)$$

$$= y+z+y \qquad (2)$$

$$= y+z \qquad (2)$$

Another example



$$x+y = u+y \qquad (1)$$

$$= y+z+y \qquad (2)$$

$$= y+z \qquad (2)$$

$$= u \qquad (2)$$

Bisimulations up-to **congruence** HKC algorithm of Bonchi&Pous

More examples

Up-To Techniques for Weighted Systems. (TACAS '17)

Filippo Bonchi, Barbara König, Sebastian Küpper

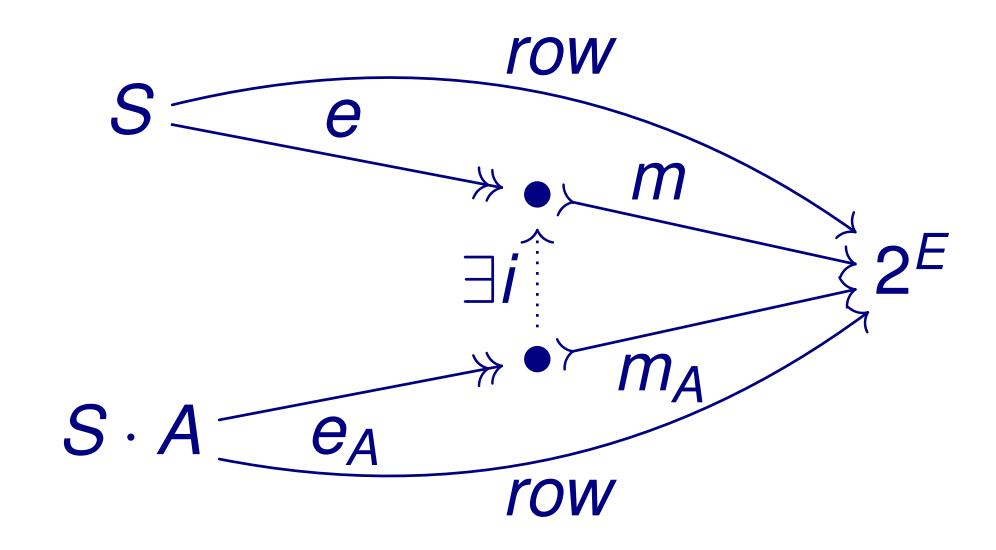
The Power of Convex Algebras (CONCUR' 17)

Filippo Bonchi, Alexandra Silva, Ana Sokolova

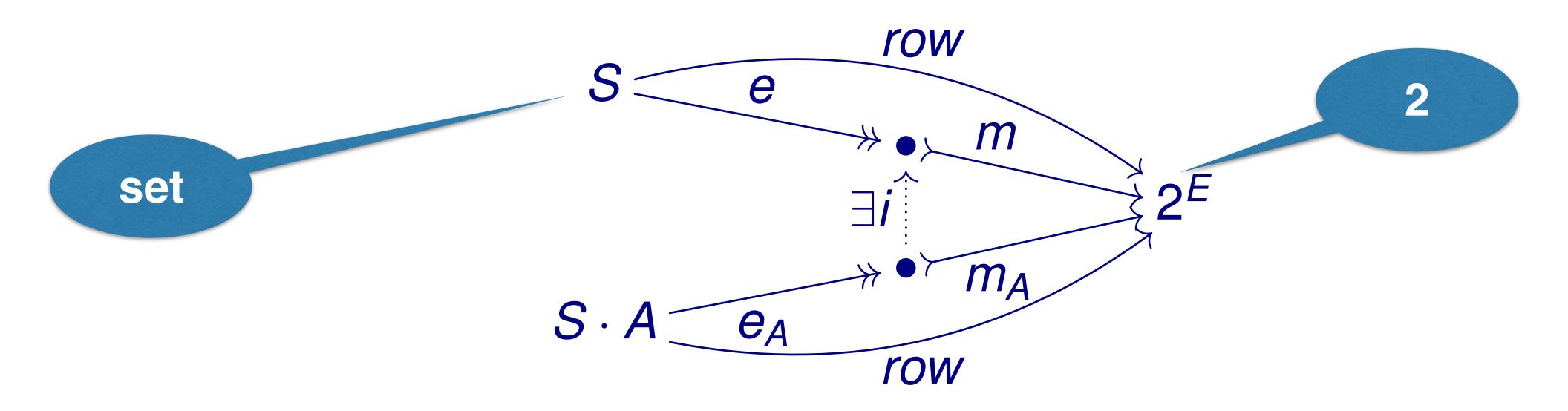
Coinduction up-to in a fibrational setting (CSL-LICS 2014)

Filippo Bonchi, Daniela Petrisan, Damien Pous, Jurriaan Rot

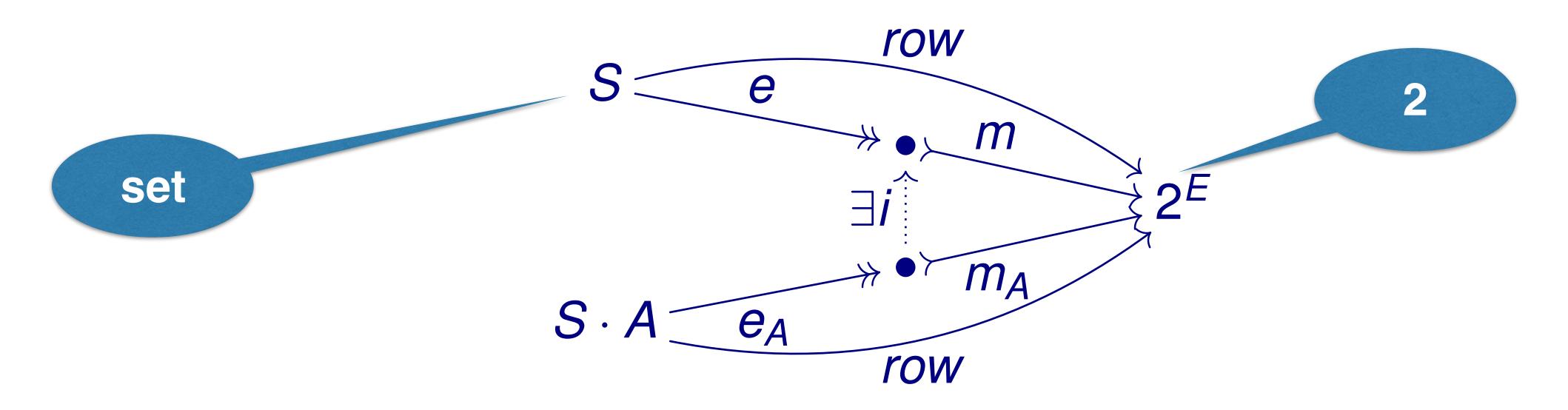
(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

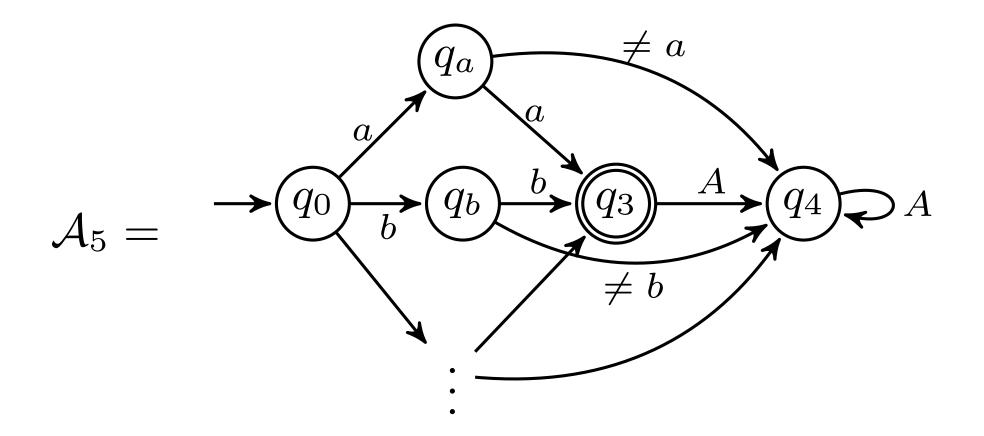
Can we develop L* for infinite (nominal) sets?

Infinite alphabets

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

A infinite

$$\mathcal{L}_1 = \{aa, bb, cc, dd, \ldots\}$$



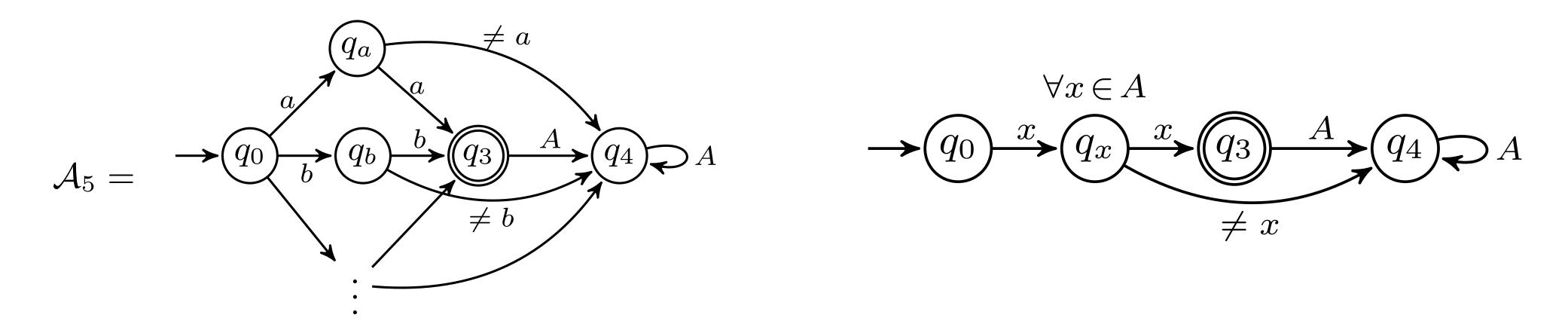
infinite automaton

Infinite alphabets

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

A infinite

$$\mathcal{L}_1 = \{aa, bb, cc, dd, \ldots\}$$



infinite automaton

but with a finite representation

Nominal sets

name binding alpha-equivalence

.

Nominal sets

name binding alpha-equivalence

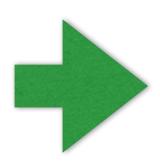
.

Infinite sets

Nominal sets

name binding alpha-equivalence

Infinite sets with symmetries



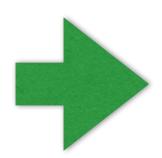
Finitely representable

Nominal sets

name binding alpha-equivalence

. . . .

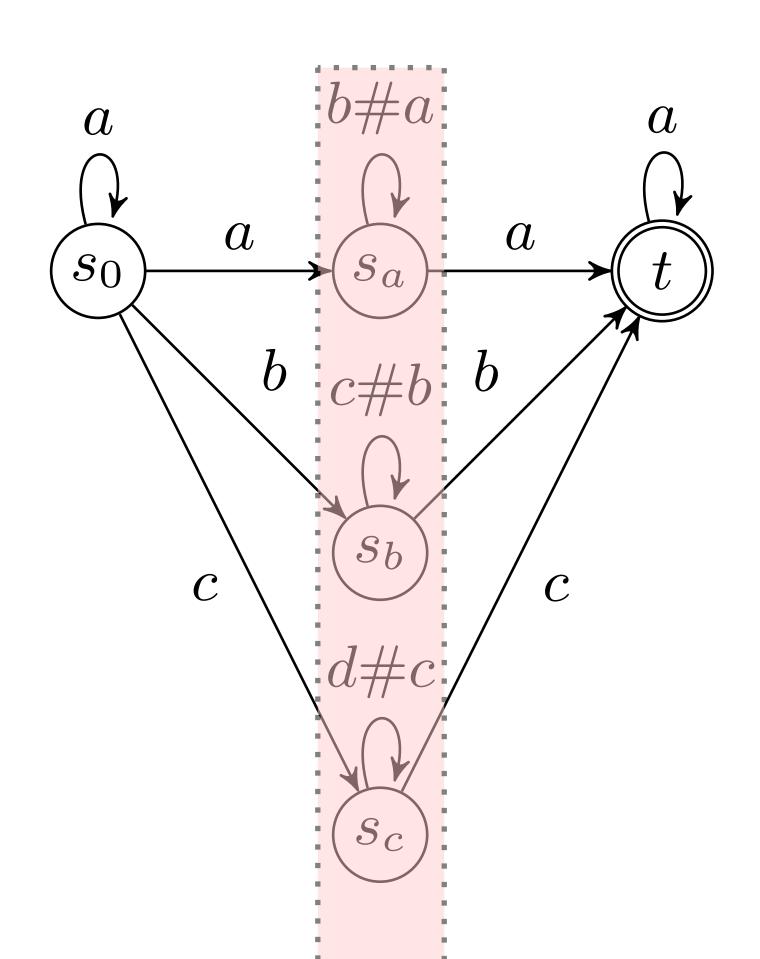
Infinite sets with symmetries



Finitely representable

Automata theory over nominal sets

Nominal automate



A infinite

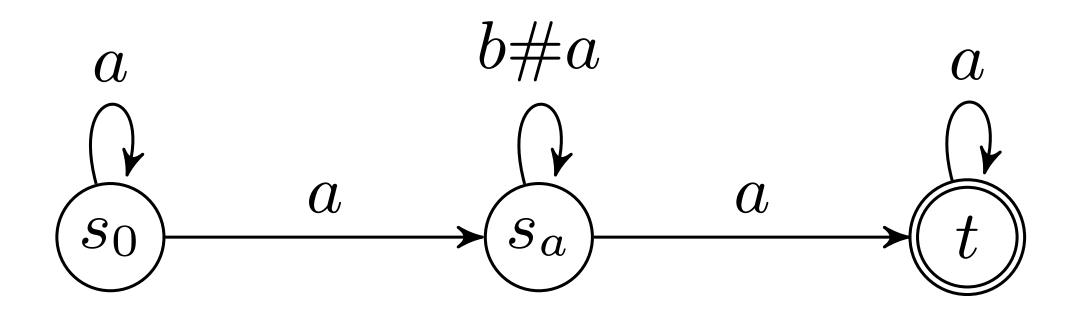
 $\{w \in \mathbb{A}^* \mid \exists a.a \text{ occurs twice in } w\}$

Nominal automata



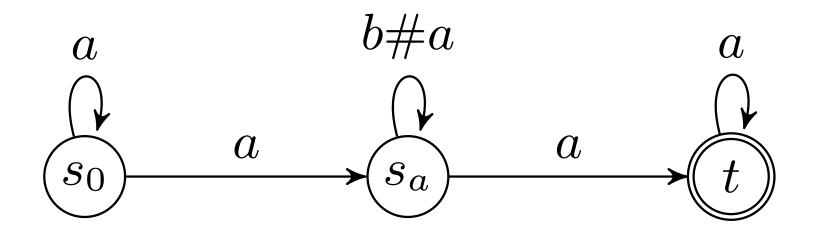
A infinite

 $\{w \in \mathbb{A}^* \mid \exists a.a \text{ occurs twice in } w\}$



finite representation

Nominal automata



finite representation

$$X = \{s_0\} + \mathbb{A} + \{t\}$$

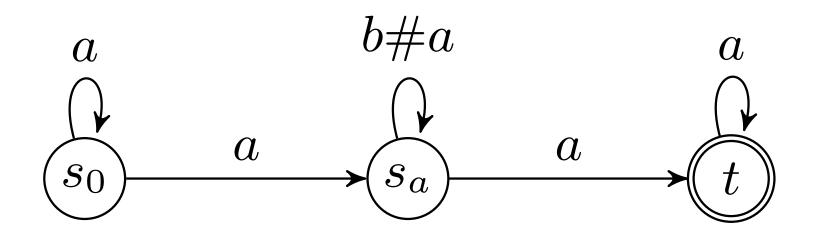
canonical permutations

$$\pi: \mathbb{A} \to \mathbb{A}$$
 $s_a \mapsto s_{\pi a}$

transition closed under permutations equivariant

$$s_a \xrightarrow{a} t \Rightarrow s_{\pi a} \xrightarrow{\pi a} t$$

Nominal automate



finite representation

$$X = \{s_0\} + \mathbb{A} + \{t\}$$

canonical permutations

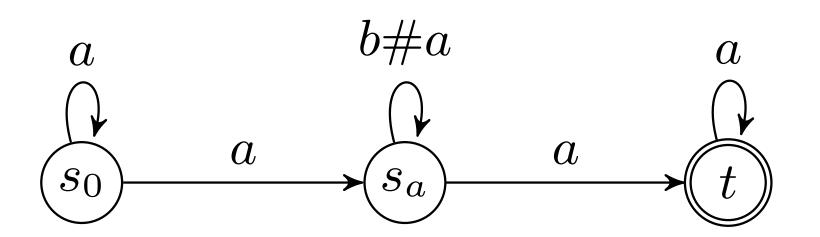
$$\pi: \mathbb{A} \to \mathbb{A}$$
 $s_a \mapsto s_{\pi a}$

transition closed under permutations equivariant

$$s_a \xrightarrow{a} t \Rightarrow s_{\pi a} \xrightarrow{\pi a} t$$

algebraic structure

Inominal automatal



$$X \to 2 \times X^A$$

DFA in Nom

$$X = \{s_0\} + \mathbb{A} + \{t\}$$

$$\pi: \mathbb{A} \to \mathbb{A}$$

$$s_a \mapsto s_{\pi a}$$

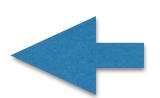
transition closed under permutations equivariant

$$s_a \xrightarrow{a} t \Rightarrow s_{\pi a} \xrightarrow{\pi a} t$$

algebraic structure

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
           if the Teacher replies \mathbf{no}, with a counter-example t
12
                 S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

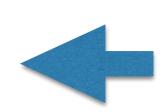
```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
           if the Teacher replies \mathbf{no}, with a counter-example t
12
                 S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```



range over infinite sets

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
12
                S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

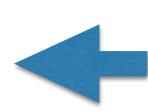

range over infinite sets



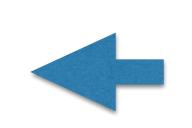
finding witnesses potentially requires checking infinite rows

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
12
                S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```


range over infinite sets



finding witnesses potentially requires checking infinite rows



t has only finitely many prefixes, but an infinite S is necessary

```
L* LEARNER
                                                                                           range over infinite sets
     S, E \leftarrow \{\epsilon\}
     repeat
          while (S, E) is not closed or not consistent
          if (S, E) is not closed
               find s_1 \in S, a \in A such that
                   row(s_1a) \neq row(s), for all s \in S
                                                                                            finding witnesses potentially
              S \leftarrow S \cup \{s_1a\}
                                                                                           requires checking infinite rows
          if (S, E) is not consistent
              find s_1, s_2 \in S, a \in A, and e \in E such that
                   row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
              E \leftarrow E \cup \{ae\}
          Make the conjecture M(S, E)
10
                                                                                            t has only finitely many prefixes,
          if the Teacher replies no, with a counter-example t
12
              S \leftarrow S \cup \mathtt{prefixes}(t)
                                                                                            but an infinite S is necessary
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

no finite automaton accepts

```
L* LEARNER
                                                                                           range over infinite sets
     S, E \leftarrow \{\epsilon\}
     repeat
          while (S, E) is not closed or not consistent
          if (S, E) is not closed
               find s_1 \in S, a \in A such that
                   row(s_1a) \neq row(s), for all s \in S
                                                                                            finding witnesses potentially
              S \leftarrow S \cup \{s_1a\}
                                                                                           requires checking infinite rows
          if (S, E) is not consistent
              find s_1, s_2 \in S, a \in A, and e \in E such that
                   row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
              E \leftarrow E \cup \{ae\}
          Make the conjecture M(S, E)
10
                                                                                            t has only finitely many prefixes,
          if the Teacher replies no, with a counter-example t
12
              S \leftarrow S \cup \mathtt{prefixes}(t)
                                                                                             but an infinite S is necessary
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

(P1) the sets S, S·A and E admit a finite representation up to permutations; **(P2)** row is such that $row(\pi(s))(\pi(e)) = row(s)(e)$, for all $s \in S$ and $e \in E$. Observation table admits a finite symbolic representation.

```
6' S \leftarrow S \cup \text{orb}(sa)

9' E \leftarrow E \cup \text{orb}(ae)

12' E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

only 3 lines changed!

```
6' \quad S \leftarrow S \cup \text{orb}(sa)
9' \quad E \leftarrow E \cup \text{orb}(ae)
12' \quad E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

only 3 lines changed!

not really... all definitions have to be adapted to nominal/equivariant.

```
6' S \leftarrow S \cup \text{orb}(sa)

9' E \leftarrow E \cup \text{orb}(ae)

12' E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

only 3 lines changed!

not really... all definitions have to be adapted to nominal/equivariant.

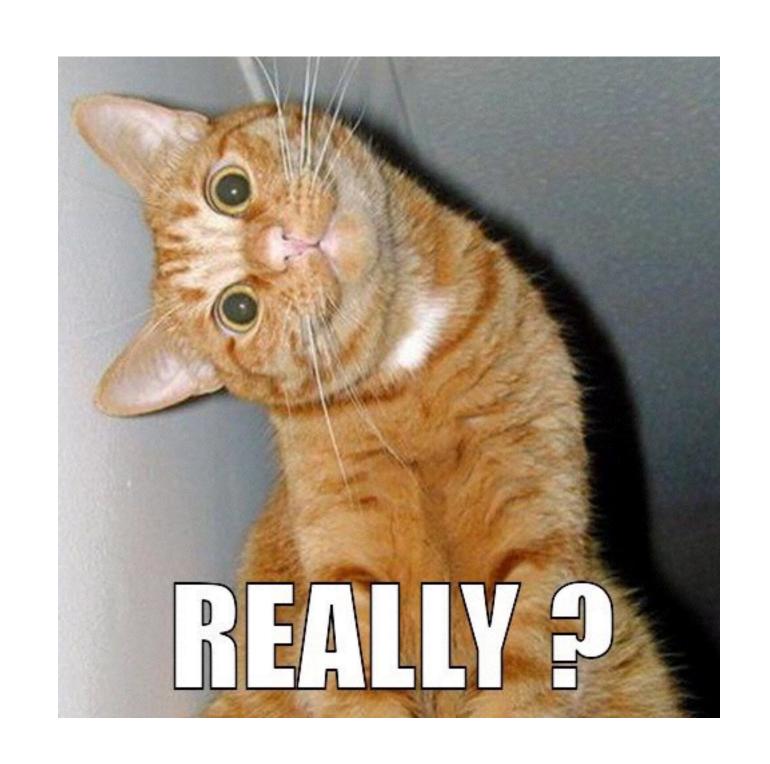
Correctness, termination, ... have to be re-proved!

```
6' \quad S \leftarrow S \cup \text{orb}(sa)
9' \quad E \leftarrow E \cup \text{orb}(ae)
12' \quad E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

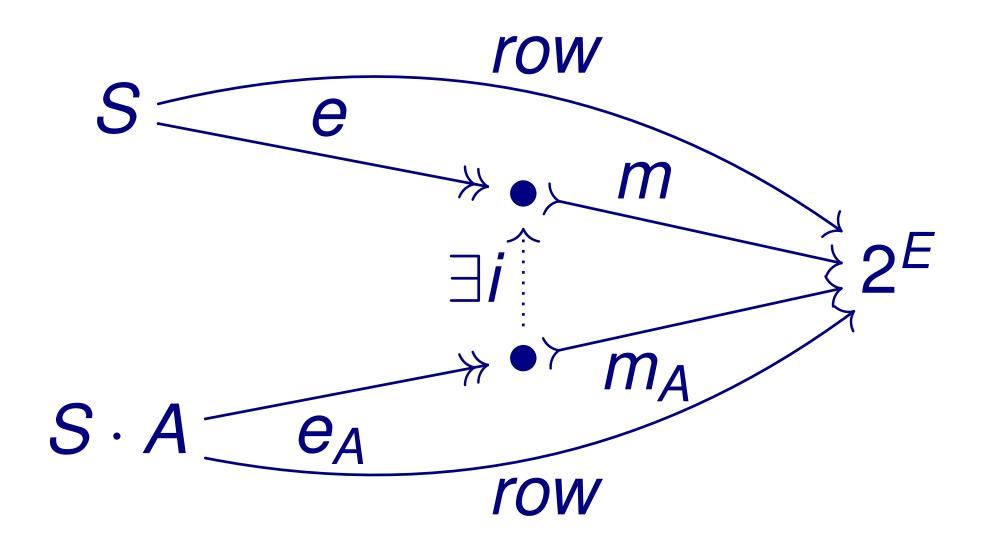
only 3 lines changed!

not really... all definitions have to be adapted to nominal/equivariant.

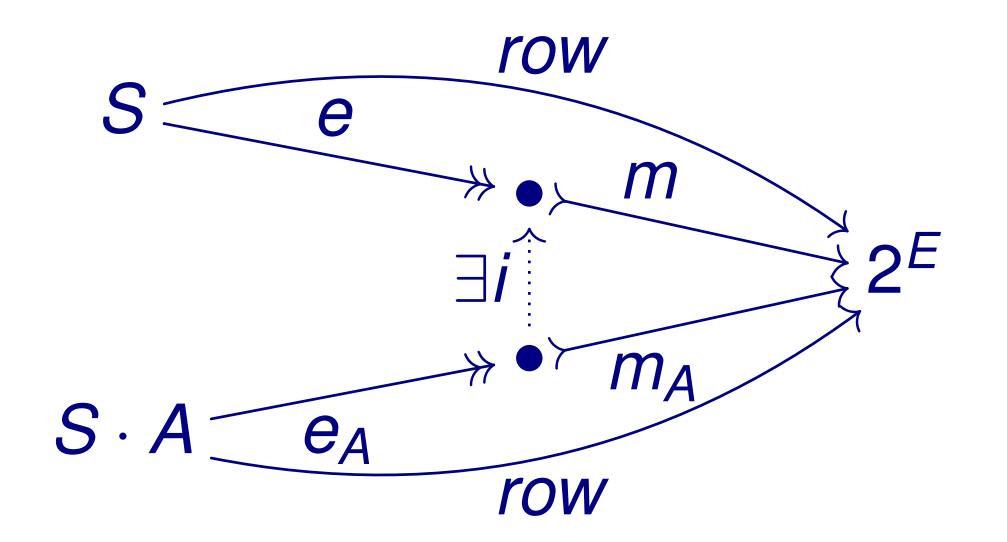
Correctness, termination, ... have to be re-proved!



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

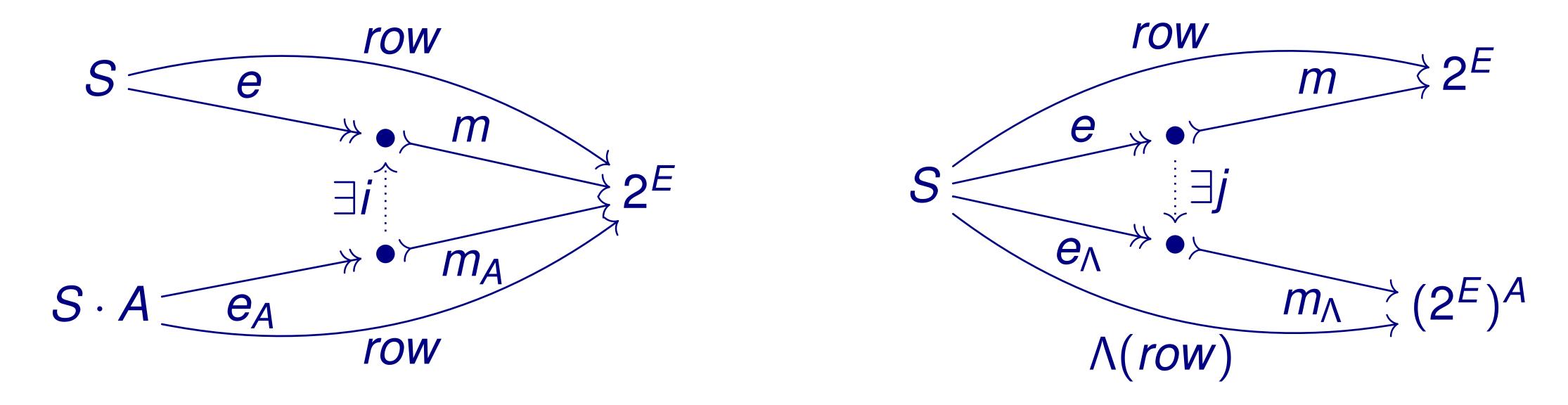


(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).



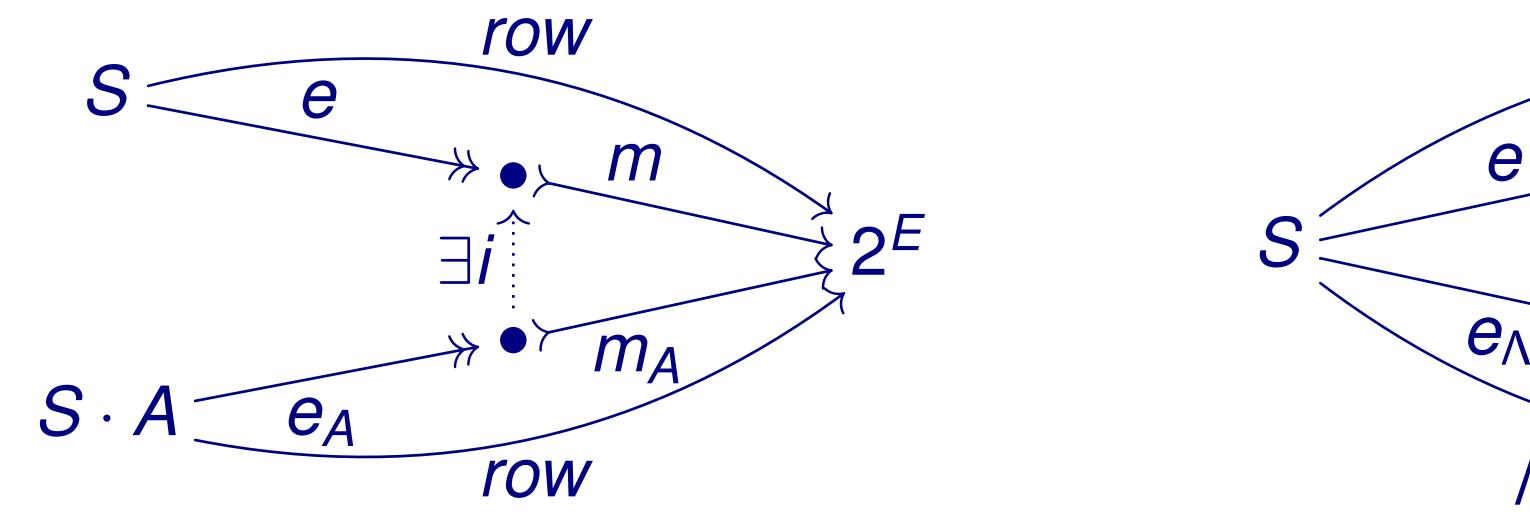
(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

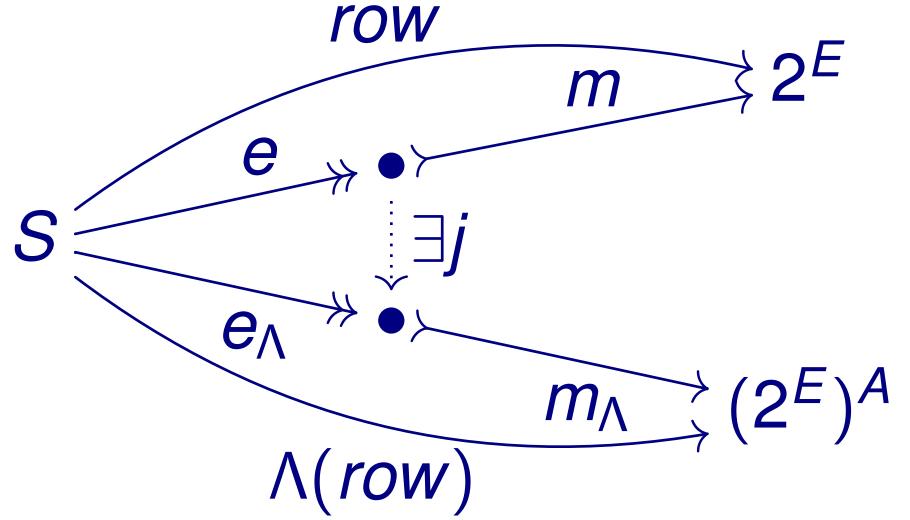
(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.





(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

(S, E, row) is c Pretty.... but is it useful? are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

The power of abstraction

 $X \rightarrow 2 \times X^A$

DFA in Nom

Definitions are the same

Proof of correctness is the same

The power of abstraction

 $X \rightarrow 2 \times X^A$

DFA in Nom

Definitions are the same

Proof of correctness is the same

$$\begin{array}{c|c}
1 & init & final \\
A^* - - - - - \Rightarrow Q - - - - \Rightarrow 2^{A*} \\
c & \delta & \partial \\
(A^*)^A - - - - \Rightarrow Q^A - - - \Rightarrow (2^{A*})^A
\end{array}$$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$FQ$$
 $\downarrow \delta_Q$
 $\downarrow I$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Y$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$FQ$$
 $\downarrow \delta_Q$
 $\downarrow I$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Q$
 $\downarrow Y$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$
 $\downarrow \delta_Q$ $\downarrow \delta_Q$ $\downarrow I$ $\downarrow I$ $\downarrow I$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$
 \downarrow^{δ_Q} \downarrow^{0} \downarrow^{0}

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q \times A$$

$$\downarrow^{\delta_Q}$$

$$\operatorname{init}_Q Q \operatorname{out}_Q$$

$$Y$$

$$q_0 \in Q$$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$

$$\downarrow^{\delta_Q}$$

$$\text{init}_Q \qquad \text{out}_Q$$

$$\mathbf{1} \qquad \mathbf{2}$$

$$q_0 \in Q$$

Category C = universe of state-spaces

Endofunctor $F: \mathbb{C} \to \mathbb{C}$ = automaton type

$$C = Set$$

$$F = (-) \times A$$

$$Q imes A$$

$$\downarrow^{\delta_Q}$$

$$\mathsf{init}_Q \qquad \mathsf{out}_Q$$

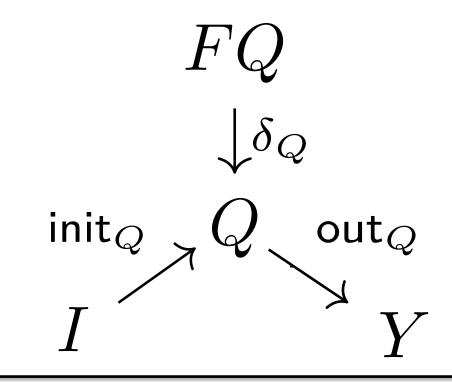
$$\mathbf{1} \qquad \mathbf{2}$$

$$q_0 \in Q \qquad F \subseteq Q$$

Abstract observation data structure

Abstract observation data structure

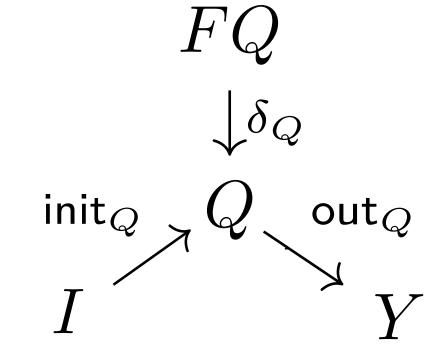
approximates

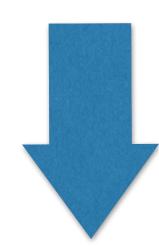


Abstract observation data structure

approximates

Target minimal automaton





abstract closedness and consistency

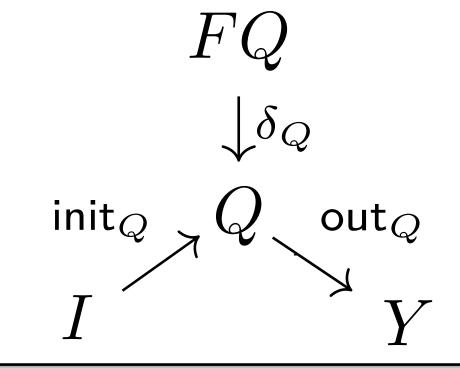
Hypothesis automaton

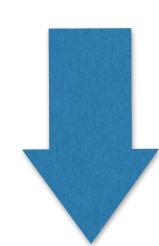
$$FH \\ \downarrow \delta_H \\ \operatorname{init}_H \to H \\ I \\ Y$$

Abstract observation data structure

approximates

Target minimal automaton





abstract closedness and consistency

Hypothesis automaton

$$FH \\ \downarrow \delta_H \\ \text{init}_H \\ I \\ \text{out}_H \\ Y$$

General correctness theorem

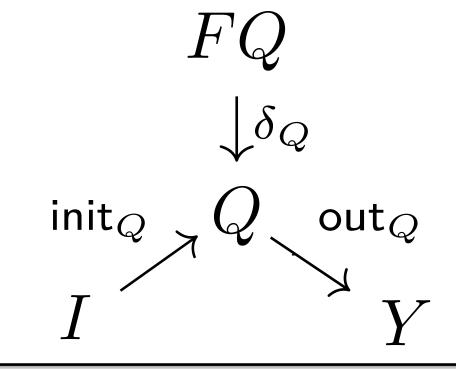
Guidelines for implementation

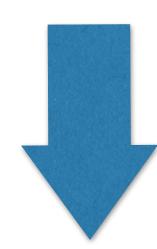
Abstract learning

Abstract observation data structure

approximates

Target minimal automaton





abstract closedness and consistency

Hypothesis automaton

$$FH \\ \downarrow \delta_H \\ \operatorname{init}_H \to H \\ I \\ Y$$

General correctness theorem

Guidelines for implementation

CALF: Categorical Automata Learning Framework (arXiv:1704.05676)

Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

Change base category

Set DFAs

Nom Nominal automata

Vect Weighted automata

Change base category

Set DFAs

Nom Nominal automata

Vect Weighted automata

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Set DFAs

Nom Nominal automata

Vect Weighted automata

Observation tables

Discrimination trees

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Learning Nominal Automata (POPL '17)

Set DFAs

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Nom Nominal automata

Discrimination trees

Vect Weighted automata

Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

Change base category

Change main data structure

Learning Nominal Automata (POPL '17)

Set DFAs

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Nom Nominal automata

Discrimination trees

Vect Weighted automata

Learning Automata with Side-effects (arXiv:1704.08055)

Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

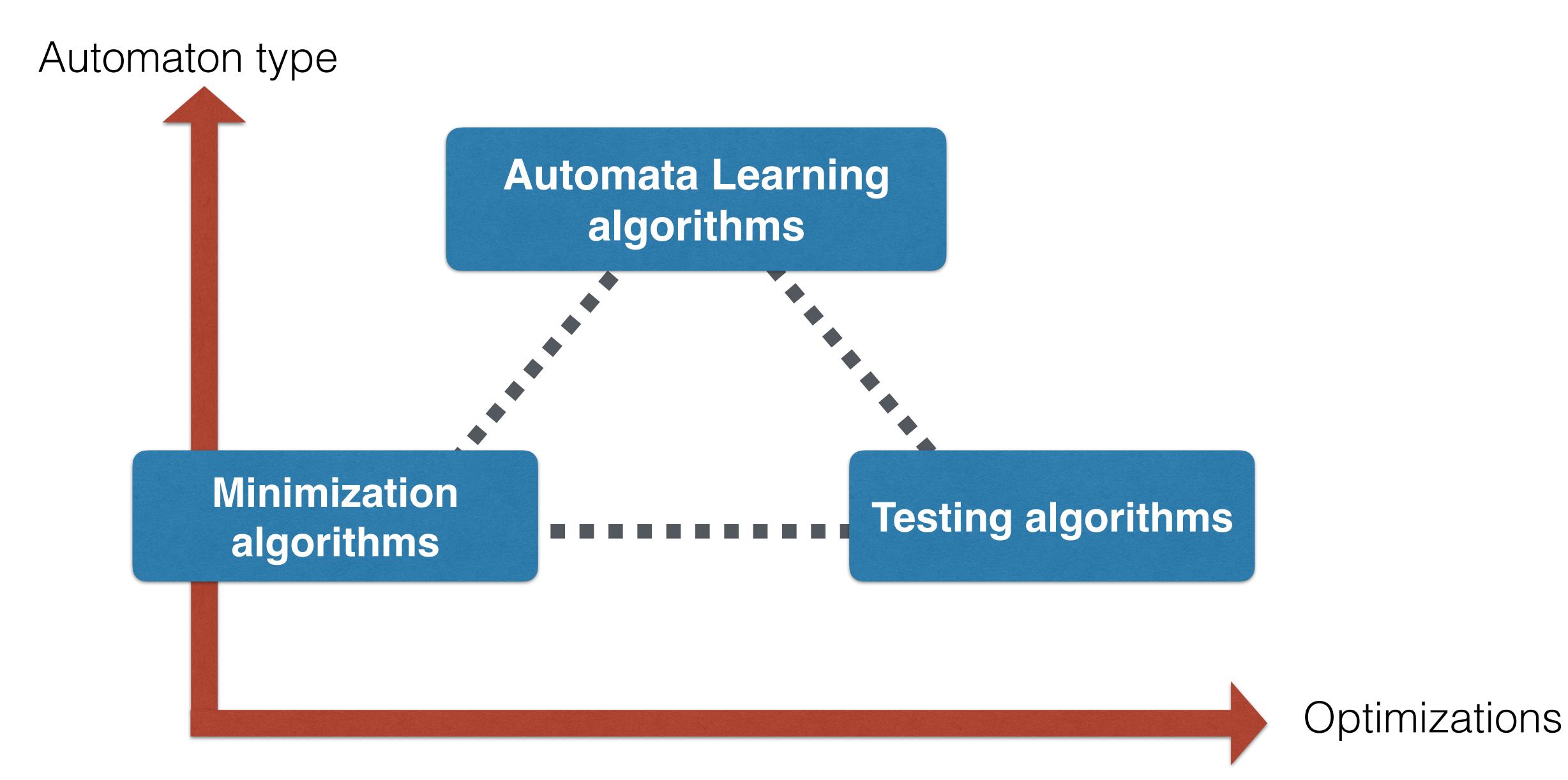
Side-effects (via monads)

Powerset NFAs

Powerset with intersection Universal automata

Double powerset Alternating automata

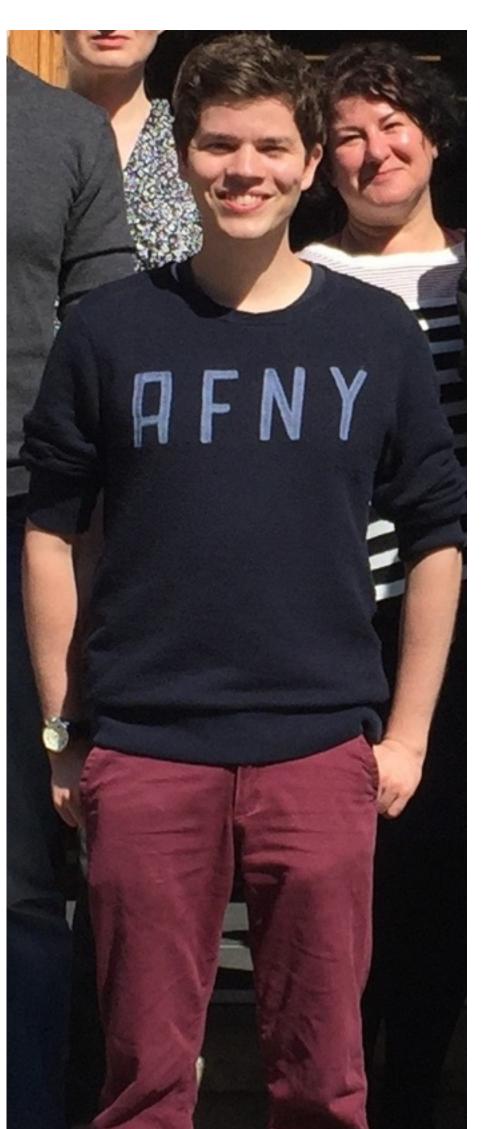
Connections with other algorithms



Ongoing and future work

- Library & tool to learn control + data-flow models (as nominal automata)
- Applications:
 - Specification mining
 - Network verification, with amazon
 - Verification of cryptographic protocols
 - Ransomware detection

Ongoing and future work



Learning convex automata

Rich algebraic structure

Challenging analytical properties

Conclusions

Category theory is a good playground to understand and generalise algorithms

Conclusions

Category theory is a good playground to understand and generalise algorithms

Unveils connections and sets the scene

No free lunch

Questions?

