Behavioural differential equations and coinduction for binary trees

An exercise on coalgebraic reasoning

Alexandra Silva

¹CWI, The Netherlands

ACG, October 2006

Motivation

Previous work by Jan:

Behavioural differential equations: a coinductive calculus of streams, automata, and power series

Elements of stream calculus (an extensive exercise in coinduction)

- showed that coinduction and behavioural differential equations are effective for stream calculus
- We want to investigate if the same approach is effective for other infinite structures, e.g. infinite binary trees

What will we show?

We will show how to...

- ... define infinite binary trees coalgebraically
- ... define bisimulations for infinite binary trees
- ... develop a calculus for binary trees à la formal power series
- ... define infinite binary trees through behavioural differential equations
- ... calculate closed expressions for infinite binary trees

Binary trees coalgebraically

Final coalgebra for $FX = X \times A \times X$:

$$T_A \xrightarrow{\langle l,i,r \rangle} T_A \times A \times T_A$$

Binary trees coalgebraically

Final coalgebra for $FX = X \times A \times X$:

$$T_A \xrightarrow{\langle l,i,r \rangle} T_A \times A \times T_A$$

Definition principle

< I, i, r > constitutes a final coalgebra structure on the set T_A .

```
\begin{cases} i(f(x)) &= \cdots \\ l(f(x)) &= \cdots \\ r(f(x)) &= \cdots \end{cases} has a unique solution.
```

Definition principle

< I, i, r > constitutes a final coalgebra structure on the set T_A .

$$\begin{cases} i(f(x)) &= \cdots \\ l(f(x)) &= \cdots \text{ has a unique solution.} \\ r(f(x)) &= \cdots \end{cases}$$

is totally defined by

$$i(const(n)) = n$$

 $I(const(n)) = r(const(n)) = const(0)$

is totally defined by

$$i(const(n)) = n$$

 $I(const(n)) = r(const(n)) = const(0)$

The operation

is totally determined by

$$i(\sigma + \tau) = i(\sigma) + i(\tau)$$

 $I(\sigma + \tau) = I(\sigma) + I(\tau)$
 $I(\sigma + \tau) = I(\sigma) + I(\tau)$

$$i(\sigma) = 0$$

 $l(\sigma) = \sigma + const(1)$
 $r(\sigma) = \sigma$

Bisimulation and coinduction

Define:

A bisimulation on T_A is a relation $R \subseteq T_A \times T_A$ such that for every $(\sigma, \tau) \in R$:

- $i(\sigma) = i(\tau)$
- $(r(\sigma), r(\tau)) \in R$
- $(I(\sigma), I(\tau)) \in R$

Theorem (Coinduction)

For all trees σ and τ in T_A if $\sigma \sim \tau$ then $\sigma = \tau$

In order to prove the equality of two trees σ and τ is enough to establish the existence of a bisimulation R s.t. $(\sigma, \tau) \in R$.

Bisimulation and coinduction

Define:

A bisimulation on T_A is a relation $R \subseteq T_A \times T_A$ such that for every $(\sigma, \tau) \in R$:

- $i(\sigma) = i(\tau)$
- $(r(\sigma), r(\tau)) \in R$
- $(I(\sigma), I(\tau)) \in R$

Theorem (Coinduction)

For all trees σ and τ in T_A if $\sigma \sim \tau$ then $\sigma = \tau$

In order to prove the equality of two trees σ and τ is enough to establish the existence of a bisimulation R s.t. $(\sigma, \tau) \in R$.

Bisimulation and coinduction

Define:

A bisimulation on T_A is a relation $R \subseteq T_A \times T_A$ such that for every $(\sigma, \tau) \in R$:

- $i(\sigma) = i(\tau)$
- $(r(\sigma), r(\tau)) \in R$
- $(I(\sigma), I(\tau)) \in R$

Theorem (Coinduction)

For all trees σ and τ in T_A if $\sigma \sim \tau$ then $\sigma = \tau$

In order to prove the equality of two trees σ and τ is enough to establish the existence of a bisimulation R s.t. $(\sigma, \tau) \in R$.

First, let us prove that:

$$const(n_1 + n_2) = const(n_1) + const(n_2), \ n_1, n_2 \in \mathbb{R}$$

$$f$$
 linear $\Rightarrow map_f(\sigma + \tau) = map_f(\sigma) + map_f(\tau)$

- f linear $\Rightarrow f(x + y) = f(x) + f(y)$
- map_f is defined as

$$i(map_f(\sigma)) = f(i(\sigma))$$

 $I(map_f(\sigma)) = map_f(I(\sigma))$
 $r(map_f(\sigma)) = map_f(r(\sigma))$

$$f$$
 linear $\Rightarrow map_f(\sigma + \tau) = map_f(\sigma) + map_f(\tau)$

- f linear $\Rightarrow f(x + y) = f(x) + f(y)$
- map_f is defined as

```
i(map_f(\sigma)) = f(i(\sigma))

I(map_f(\sigma)) = map_f(I(\sigma))

r(map_f(\sigma)) = map_f(r(\sigma))
```

$$f$$
 linear $\Rightarrow map_f(\sigma + \tau) = map_f(\sigma) + map_f(\tau)$

- f linear $\Rightarrow f(x + y) = f(x) + f(y)$
- map_f is defined as

$$i(map_f(\sigma)) = f(i(\sigma))$$

 $I(map_f(\sigma)) = map_f(I(\sigma))$
 $r(map_f(\sigma)) = map_f(r(\sigma))$

Formal power series

Recall: A formal power series is a function $\sigma: X^* \to k$ where X is the set of variables (or input symbols) and k is a semiring.

For A semiring, the set T_A is a formal power series over X=2 (**Why?**), *i.e*,

$$T_A = \{\sigma | \sigma : \mathbf{2}^* \to A\}$$

Behavioural Differential Equations

The formal definition of $\sigma \in T_A$ is now expressed in terms of a behavioural differential equation.

$$\sigma(\varepsilon) = c$$
 initial value
 $\sigma_L = left_exp$ left derivative
 $\sigma_R = right_exp$ right derivative

•
$$2 = \{L, R\}$$

$$\sigma(\varepsilon) = n$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma$

$$\begin{aligned}
\sigma(\varepsilon) &= n \\
\sigma_L &= \sigma \\
\sigma_R &= \sigma
\end{aligned}$$

$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

Note: [1] denotes *const*(1)

$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

Note: [1] denotes const(1)

Derivatives

Recall that we have previously defined

as

$$i(\sigma) = 0$$

 $l(\sigma) = \sigma + const(1)$
 $r(\sigma) = \sigma$

which resembles the definition with derivatives and is due to the fact that for all $\sigma \in T_A$:

$$\sigma(\varepsilon) = i(\sigma)$$
 $\sigma_L = l(\sigma)$
 $\sigma_R = r(\sigma)$

Operations on trees

From formal power series we inherit several definitions of operations:

Name	Sum	Product
Initial value	$(\sigma+\tau)(\varepsilon)=\sigma(\varepsilon)+\tau(\varepsilon)$	$(\sigma \times \tau)(\varepsilon) = \sigma(\varepsilon) \times \tau(\varepsilon)$
Left der.	$(\sigma + \tau)_{L} = \sigma_{L} + \tau_{L}$	$(\sigma \times \tau)_{L} = \sigma_{L} \times \tau + \sigma(\varepsilon) \times \tau_{L}$
Right der	$(\sigma + \tau)_R = \sigma_R + \tau_R$	$(\sigma \times \tau)_{R} = \sigma_{R} \times \tau + \sigma(\varepsilon) \times \tau_{R}$

Fundamental Theorem

For all infinite binary trees $\sigma \in T_A$:

$$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$$

$$L(\varepsilon) = 0$$
 $R(\varepsilon) = 0$
 $L_L = [1]$ $R_L = [0]$
 $L_R = [0]$ $R_R = [1]$

Fundamental Theorem

For all infinite binary trees $\sigma \in T_A$:

$$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$$

$$L(\varepsilon) = 0$$

 $L_L = [1]$
 $L_R = [0]$

$$R(\varepsilon) = 0$$

 $R_L = [0]$
 $R_R = [1]$

Why?

$R \times \sigma_R$

Similarly:

$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$

But... What can we do with this theorem?

Examples Revisited

$$\sigma(\varepsilon) = n$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma$

Inverse operation

The inverse of a tree – σ^{-1} – is defined as

$$\sigma^{-1}(\varepsilon) = (\sigma(\varepsilon))^{-1}$$

$$(\sigma^{-1})_L = (\sigma(\varepsilon))^{-1} \times \sigma_L \times \sigma^{-1}$$

$$(\sigma^{-1})_R = (\sigma(\varepsilon))^{-1} \times \sigma_R \times \sigma^{-1}$$

so that $\sigma \times \sigma^{-1} = 1$.

Examples Revisited

$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

The natural numbers

Substitution

Conclusions

- Coinductive definitions and bisimulations are a systematic way to reason about infinite structures and operations on them
- Behavioural differential equations are effective to represent (regular) infinite binary trees
- Closed expressions constitute a nice representation of trees (only involving constants)

Future work

- Behavioural differential equations are closely related to lazy functional programming implementations.
- Coinduction gives a systematic way of reasoning about such programs.
- In particular, we would like to study the relation between closed expressions and elimination of corecursion
- We would also like to understand better the class of rational trees