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Motivation

Previous work by Jan:

Behavioural differential equations: a coinductive calculus of streams, automata,
and power series
Elements of stream calculus (an extensive exercise in coinduction)

showed that coinduction and behavioural differential equations are
effective for stream calculus
We want to investigate if the same approach is effective for other
infinite structures, e.g. infinite binary trees

Alexandra (CWI) Differential equations for binary trees ACG 2006 2 / 27



What will we show?

We will show how to. . .
. . . define infinite binary trees coalgebraically
. . . define bisimulations for infinite binary trees
. . . develop a calculus for binary trees à la formal power series
. . . define infinite binary trees through behavioural differential
equations
. . . calculate closed expressions for infinite binary trees
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Binary trees coalgebraically

Final coalgebra for FX = X × A× X :

TA
<l,i,r>−−−−→ TA × A× TA
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Definition principle

< l , i , r > constitutes a final coalgebra structure on the set TA.

⇓
i(f (x)) = · · ·
l(f (x)) = · · ·
r(f (x)) = · · ·

has a unique solution.
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Examples

const : R −−−−−−−−−−−−−−−−−−−−−−−→ TR

0 0

0

n

0 0

0
n

is totally defined by

i(const(n)) = n
l(const(n)) = r(const(n)) = const(0)
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Examples

The operation

+ : TR × TR −−−−−−−−−−−−−−→ TR

f g

c
a

d e

b +
w x

t
r

u v

s =
f+w g+x

c+t

a+r

d+u e+v

b+s

is totally determined by

i(σ + τ) = i(σ) + i(τ)

l(σ + τ) = l(σ) + l(τ)

r(σ + τ) = r(σ) + r(τ)
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Examples

1 0

0

0

1 0

1

i(σ) = 0
l(σ) = σ + const(1)
r(σ) = σ
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Bisimulation and coinduction

Define:
A bisimulation on TA is a relation R ⊆ TA × TA such that for every
(σ, τ) ∈ R:

1 i(σ) = i(τ)

2 (r(σ), r(τ)) ∈ R
3 (l(σ), l(τ)) ∈ R

Theorem (Coinduction)
For all trees σ and τ in TA if σ ∼ τ then σ = τ

In order to prove the equality of two trees σ and τ is enough to
establish the existence of a bisimulation R s.t. (σ, τ) ∈ R.
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Examples

First, let us prove that:

const(n1 + n2) = const(n1) + const(n2), n1, n2 ∈ R
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Examples

f linear ⇒ mapf (σ + τ) = mapf (σ) + mapf (τ)

where
f linear ⇒ f (x + y) = f (x) + f (y)

mapf is defined as

i(mapf (σ)) = f (i(σ))

l(mapf (σ)) = mapf (l(σ))

r(mapf (σ)) = mapf (r(σ))
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Formal power series

Recall: A formal power series is a function σ : X ∗ → k where X is the
set of variables (or input symbols) and k is a semiring.

For A semiring, the set TA is a formal power series over X=2 (Why?),
i.e,

TA = {σ|σ : 2∗ → A}
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Behavioural Differential Equations

The formal definition of σ ∈ TA is now expressed in terms of a
behavioural differential equation.

σ(ε) = c initial value
σL = left_exp left derivative
σR = right_exp right derivative

2 = {L, R}
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Examples

n n

n

n

n n

n

σ(ε) = n
σL = σ

σR = σ
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Examples

1 0

0

0

1 0

1

σ(ε) = 0
σL = σ + [1]
σR = σ

Note: [1] denotes const(1)
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Derivatives

Recall that we have previously defined

1 0

0

0

1 0

1

as
i(σ) = 0
l(σ) = σ + const(1)
r(σ) = σ

which resembles the definition with derivatives and is due to the fact
that for all σ ∈ TA:

σ(ε) = i(σ)
σL = l(σ)
σR = r(σ)

Alexandra (CWI) Differential equations for binary trees ACG 2006 14 / 27



Operations on trees

From formal power series we inherit several definitions of operations:

Name Sum Product
Initial value (σ+τ)(ε)=σ(ε)+τ(ε) (σ × τ)(ε) = σ(ε)× τ(ε)

Left der. (σ + τ)L = σL + τL (σ × τ)L = σL × τ + σ(ε)× τL
Right der (σ + τ)R = σR + τR (σ × τ)R = σR × τ + σ(ε)× τR
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Fundamental Theorem

For all infinite binary trees σ ∈ TA:

σ = σ(ε) + L× σL + R × σR

where
L(ε) = 0 R(ε) = 0
LL = [1] RL = [0]
LR = [0] RR = [1]
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L× σL

0 0

0
0

0 0

1 X 
f g

c
a

d e

b =
0

f g

c
a

d e

b 0
0

0

Why?
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R × σR

Similarly:

0 0

1
0

0 0

0 X 
u v

r
p

s t

q =
0

u v

r
p

s t

q0
0

0
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σ = σ(ε) + L× σL + R × σR

i

u v

r
p

s t

q

f g

c
a

d e

b

0

u v

r
p

s t

q0
0
0

0

f g
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d e

b 0
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0

+
0 0

0
i

0 0

0 +

=
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But. . . What can we do with this theorem?

?
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Examples Revisited

n n

n

n

n n

n

σ(ε) = n
σL = σ
σR = σ
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Inverse operation

The inverse of a tree – σ−1 – is defined as

σ−1(ε) = (σ(ε))−1

(σ−1)L = (σ(ε))−1 × σL × σ−1

(σ−1)R = (σ(ε))−1 × σR × σ−1

so that σ × σ−1 = 1.
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Examples Revisited

1 0

0

0

1 0

1

σ(ε) = 0
σL = σ + [1]
σR = σ
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The natural numbers

6 7

3

1

4 5

2
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Substitution
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Conclusions

Coinductive definitions and bisimulations are a systematic way to
reason about infinite structures and operations on them
Behavioural differential equations are effective to represent
(regular) infinite binary trees
Closed expressions constitute a nice representation of trees (only
involving constants)
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Future work

Behavioural differential equations are closely related to lazy
functional programming implementations.
Coinduction gives a systematic way of reasoning about such
programs.
In particular, we would like to study the relation between closed
expressions and elimination of corecursion
We would also like to understand better the class of rational trees
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