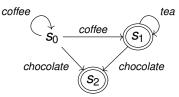
Determinization constructions: from automata to coalgebras

Alexandra Silva joint work with F. Bonchi, M. Bonsangue and J. Rutten

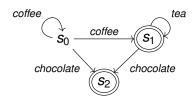
ACG, November 2011

Non-deterministic automata



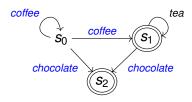
coffee
chocolate
coffee;chocolate
coffee;tea
coffee;coffee;tea
chocolate:tea

Non-deterministic automata

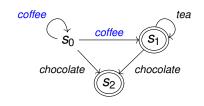


coffee
chocolate
coffee;chocolate
coffee;tea
coffee;coffee;tea
chocolate:tea

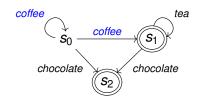
Non-deterministic automata

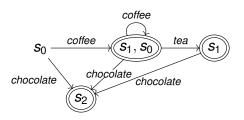


Non-deterministic automata: how to eliminate choice?



Non-deterministic automata: how to eliminate choice?





Starting point: Non-deterministic automaton

$$\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to 2 \times \mathcal{P}(Q)^A)$$

Goal: Deterministic automator

$$det(\mathcal{A}) = (\mathcal{P}(Q), \langle \hat{o}, \hat{\delta} \rangle \colon \mathcal{P}(Q) o 2 \times \mathcal{P}(Q)^A)$$

with the property

$$L(Q) = \bigcup_{q \in Q} L(q)$$

(this will be made more precise later)

Starting point: Non-deterministic automaton

$$\mathcal{A} = (Q, \langle o, \delta \rangle : Q \to 2 \times \mathcal{P}(Q)^A)$$

Goal: Deterministic automaton

$$det(\mathcal{A}) = (\mathcal{P}(\textit{Q}), \langle \hat{\textit{o}}, \hat{\delta} \rangle \colon \mathcal{P}(\textit{Q}) \to 2 \times \mathcal{P}(\textit{Q})^{\textit{A}})$$

with the property

$$L(Q) = \bigcup_{q \in Q} L(q)$$

(this will be made more precise later)

Starting point: Non-deterministic automaton

$$\mathcal{A} = (Q, \langle o, \delta \rangle : Q \to 2 \times \mathcal{P}(Q)^A)$$

Goal: Deterministic automaton

$$det(\mathcal{A}) = (\mathcal{P}(\textit{Q}), \langle \hat{\textit{o}}, \hat{\delta} \rangle \colon \mathcal{P}(\textit{Q}) \to 2 \times \mathcal{P}(\textit{Q})^{\textit{A}})$$

with the property

$$L(Q) = \bigcup_{q \in Q} L(q)$$

(this will be made more precise later)

Starting point: Non-deterministic automaton

$$\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to 2 \times \mathcal{P}(Q)^A)$$

Goal: Deterministic automaton

$$det(\mathcal{A}) = (\mathcal{P}(Q), \langle \hat{o}, \hat{\delta} \rangle \colon \mathcal{P}(Q) \to 2 \times \mathcal{P}(Q)^{A})$$

The maps \hat{o} and $\hat{\delta}$ are defined as

$$\hat{o}(Y) = \begin{cases} 1 & \exists_{y \in Y} o(y) = 1 \\ 0 & \text{otherwise} \end{cases} \qquad \hat{\delta}(Y)(a) = \bigcup_{y \in Y} \delta(y)(a).$$

This construction guarantees that any word which labels a successful path in \mathcal{A} also labels a successful path in $det(\mathcal{A})$ (and vice-versa).

Starting point: Non-deterministic automaton

$$\mathcal{A} = (Q, \langle o, \delta \rangle : Q \to 2 \times \mathcal{P}(Q)^A)$$

Goal: Deterministic automaton

$$det(\mathcal{A}) = (\mathcal{P}(Q), \langle \hat{o}, \hat{\delta} \rangle \colon \mathcal{P}(Q) \to 2 \times \mathcal{P}(Q)^{A})$$

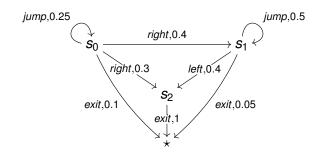
The maps \hat{o} and $\hat{\delta}$ are defined as

$$\hat{o}(Y) = \begin{cases} 1 & \exists_{y \in Y} o(y) = 1 \\ 0 & \text{otherwise} \end{cases} \qquad \hat{\delta}(Y)(a) = \bigcup_{y \in Y} \delta(y)(a).$$

This construction guarantees that any word which labels a successful path in \mathcal{A} also labels a successful path in $det(\mathcal{A})$ (and vice-versa).

Motivation (by another example)

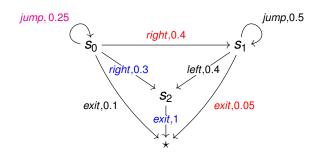
Weighted automata



What is the probability that you jump, go right and then exit?

Motivation (by another example)

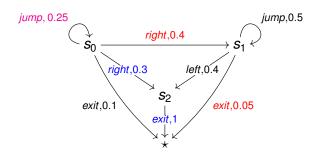
Weighted automata



What is the probability that you jump, go right and then exit?

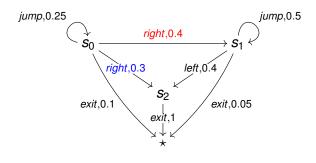
Motivation (by another example)

Weighted automata

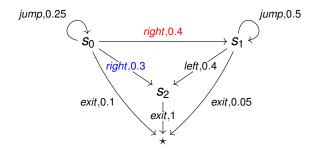


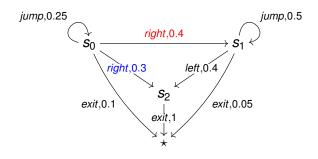
What is the probability that you jump, go right and then exit?

 $0.25 \times 0.4 \times 0.05 + 0.25 \times 0.3 \times 1 = 0.08$

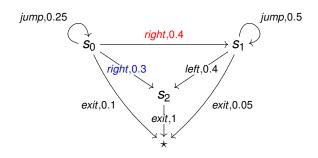


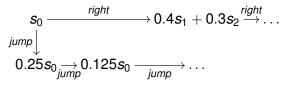
$$s_0 \stackrel{right}{----} 0.4s_1 + 0.3s_2$$
iump \downarrow $0.25s_0$





$$s_0 \xrightarrow{right} 0.4s_1 + 0.3s_2 \overset{right}{\rightarrow} \dots$$
 $jump \downarrow$
 $0.25s_0 \xrightarrow{jump} 0.125s_0 \xrightarrow{jump} \dots$





Starting point: weighted automaton $\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to \mathbb{R} \times V(Q)^A)$, $V(S) = \mathbb{R} \to S = \text{linear combinations of S.}$

Goal: Deterministic automaton

$$lin(\mathcal{A}) = (V(Q), \langle \hat{o}, \hat{\delta} \rangle \colon V(Q) \to \mathbb{R} \times V(Q)^{A})$$

with the property

$$L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$
 (this will be made more precise later)

Starting point: weighted automaton
$$\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to \mathbb{R} \times V(Q)^A)$$
, $V(S) = \mathbb{R} \to S = \text{linear combinations of S.}$

Goal: Deterministic automaton

$$\mathit{lin}(\mathcal{A}) = (V(Q), \langle \hat{o}, \hat{\delta} \rangle \colon V(Q) \to \mathbb{R} \times V(Q)^{A})$$

with the property

$$L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$
 (this will be made more precise later)

Starting point: weighted automaton
$$\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to \mathbb{R} \times V(Q)^A)$$
, $V(S) = \mathbb{R} \to S = \text{linear combinations of S.}$

Goal: Deterministic automaton

$$\mathit{lin}(\mathcal{A}) = (V(Q), \langle \hat{o}, \hat{\delta} \rangle \colon V(Q) \to \mathbb{R} \times V(Q)^{A})$$

with the property

$$L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$
 (this will be made more precise later)

Starting point: weighted automaton $\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to \mathbb{R} \times V(Q)^A)$, $V(S) = \mathbb{R} \to S = \text{linear combinations of S.}$

Goal: Deterministic automaton

$$\mathit{lin}(\mathcal{A}) = (\mathit{V}(\mathit{Q}), \langle \hat{o}, \hat{\delta} \rangle \colon \mathit{V}(\mathit{Q}) \to \mathbb{R} \times \mathit{V}(\mathit{Q})^{\mathit{A}})$$

The maps \hat{o} and $\hat{\delta}$ are defined as

$$\hat{o}(r_1q_1 + \ldots + r_nq_n) = r_1o(q_1) + \ldots + r_no(q_n) \hat{\delta}(r_1q_1 + \ldots + r_nq_n)(a) = r_1\delta(q_1)(a) + \ldots + r_n\delta(q_n)(a)$$

This construction guarantees that the weight of any word which labels a path in A is the same of as the weight in lin(A).

Starting point: weighted automaton $\mathcal{A} = (Q, \langle o, \delta \rangle \colon Q \to \mathbb{R} \times V(Q)^A)$, $V(S) = \mathbb{R} \to S = \text{linear combinations of S.}$

Goal: Deterministic automaton

$$\mathit{lin}(\mathcal{A}) = (\mathit{V}(\mathit{Q}), \langle \hat{o}, \hat{\delta} \rangle \colon \mathit{V}(\mathit{Q}) \to \mathbb{R} \times \mathit{V}(\mathit{Q})^{\mathit{A}})$$

The maps \hat{o} and $\hat{\delta}$ are defined as

$$\hat{o}(r_1q_1 + \ldots + r_nq_n) = r_1o(q_1) + \ldots + r_no(q_n) \hat{\delta}(r_1q_1 + \ldots + r_nq_n)(a) = r_1\delta(q_1)(a) + \ldots + r_n\delta(q_n)(a)$$

This construction guarantees that the weight of any word which labels a path in \mathcal{A} is the same of as the weight in $lin(\mathcal{A})$.

Summary

- In non-deterministic automata we go from a finite automaton to a finite deterministic automaton where states are sets of the original states.
- In weighted automata we go from a finite automaton to an infinite deterministic automaton where states are linear combinations of the original states.
- in both cases we go from a branching semantics (moment of choice) to a linear (or language) semantics.

Summary

- In non-deterministic automata we go from a finite automaton to a finite deterministic automaton where states are sets of the original states.
- In weighted automata we go from a finite automaton to an infinite deterministic automaton where states are linear combinations of the original states.
- in both cases we go from a branching semantics (moment of choice) to a linear (or language) semantics.

Summary

- In non-deterministic automata we go from a finite automaton to a finite deterministic automaton where states are sets of the original states.
- In weighted automata we go from a finite automaton to an infinite deterministic automaton where states are linear combinations of the original states.
- in both cases we go from a branching semantics (moment of choice) to a linear (or language) semantics.

First: what do NDA and WA have in common?

Non-deterministic automata: $(S, S \rightarrow 2 \times \mathcal{P}(S)^A)$.

Weighted automata: $(S, S \to \mathbb{R} \times V(S)^A)$.

First: what do NDA and WA have in common?

Non-deterministic automata: $(S, S \rightarrow 2 \times \mathcal{P}(S)^{A})$.

Weighted automata: $(S, S \to \mathbb{R} \times V(S)^A)$.

.

• First: what do NDA and WA have in common?

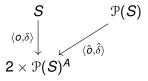
Non-deterministic automata: $(S, S \rightarrow 2 \times \mathcal{P}(S)^{A})$.

Weighted automata: $(S, S \to \mathbb{R} \times V(S)^A)$.

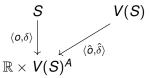
Coalgebras: $(S, S \rightarrow T(S))$.

The constructions

Non-deterministic automata



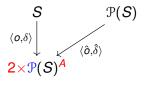
Weighted automata

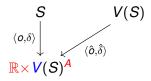


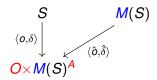
The constructions

Non-deterministic automata

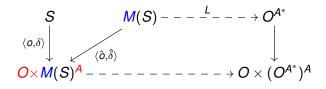
Weighted automata







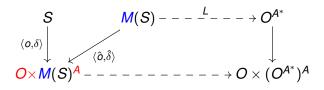
Recall from Jan's talk: semantics by finality



How to tie things together: construction and semantics?

$$L(Q) = \bigcup_{q \in Q} L(q) \qquad \qquad L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$

Recall from Jan's talk: semantics by finality



How to tie things together: construction and semantics?

$$L(Q) = \bigcup_{q \in Q} L(q)$$
 $L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$

Recall from Jan's talk: semantics by finality M is a monad

$$S \xrightarrow{\eta} M(S) - - - \xrightarrow{L} - - \rightarrow O^{A^*}$$

$$\downarrow (\hat{o}, \hat{\delta})$$

$$O \times M(S)^{A} - - - - - - - \rightarrow O \times (O^{A^*})^{A}$$

How to tie things together: construction and semantics?

$$L(Q) = \bigcup_{q \in Q} L(q) \qquad \qquad L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$

The commutativity of the diagram above is precisely these conditions!

Recall from Jan's talk: semantics by finality M is a monad

$$S \xrightarrow{\eta} M(S) - - - \xrightarrow{L} - - \rightarrow O^{A^*}$$

$$\downarrow \circ, \delta \rangle \qquad \qquad \downarrow \circ$$

$$O \times M(S)^A - - - - - - - \rightarrow O \times (O^{A^*})^A$$

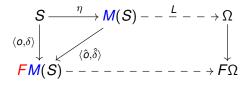
How to tie things together: construction and semantics?

$$L(Q) = \bigcup_{q \in Q} L(q) \qquad \qquad L(rq_1 + sq_2) = rL(q_1) + sL(q_2)$$

The commutativity of the diagram above is precisely these conditions!

Now some abstract non-sense

For any monad M and functor F such that FTX is an algebra of the monad M (or: F as a lifting to Set^M) and F has a final coalgebra, we can generalize the construction and semantics:



This gives rise to determinization constructions for many transitions systems: Mealy machines, structured Moore automata, Pushdown automata, . . .

Conclusions

What I hope you take home...

- Coalgebra is not only about semantics but also about algorithms
- Coalgebra is about unifying and generalizing