Deriving syntax and axioms for quantitative regular behaviours

Filippo Bonchi¹ Marcello Bonsangue^{1,2} Jan Rutten^{1,3} Alexandra Silva¹

¹Centrum voor Wiskunde en Informatica ²LIACS - Leiden University ³Vrije Universiteit Amsterdam

Arco Meeting, May 2009

- Kleene's theorem and Kleene algebra
- Extension to Kripke polynomial coalgebras (Mealy machines, Binary trees, LTS, ...)

Can we take it a step further?

Systems where labels may come from a quantitative alphabet: monoid.

- Kleene's theorem and Kleene algebra
- Extension to Kripke polynomial coalgebras (Mealy machines, Binary trees, LTS, ...)

Can we take it a step further?

Systems where labels may come from a quantitative alphabet: monoid.

- Kleene's theorem and Kleene algebra
- Extension to Kripke polynomial coalgebras (Mealy machines, Binary trees, LTS, ...)

Can we take it a step further?

Systems where labels may come from a quantitative alphabet: monoid.

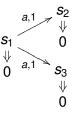
- Kleene's theorem and Kleene algebra
- Extension to Kripke polynomial coalgebras (Mealy machines, Binary trees, LTS, ...)

Can we take it a step further?

Systems where labels may come from a *quantitative alphabet*: monoid.

Examples: Weighted automata, probabilistic systems, etc

Weighted automata: a first example



Each **state** has an output value and each transition between two states is assigned a weight.

Weighted automata as coalgebras

Weighted automata as coalgebras

- ullet Output : $S \to \mathbb{M}$
- Transition : $S \to S^A \to \mathbb{M}$
- ullet $S \to \mathbb{M} \times (\mathbb{M}^S)^A$

Weighted automata as coalgebras

Weighted automata as coalgebras

- ullet Output : $S \to \mathbb{M}$
- ullet Transition : $\mathcal{S} o \mathcal{S}^{\mathcal{A}} o \mathbb{M}$
- $S \to \mathbb{M} \times (\mathbb{M}^S)^A$

Weighted automata as coalgebras

Weighted automata as coalgebras

- ullet Output : $S \to \mathbb{M}$
- Transition : $S \to S^A \to \mathbb{M}$
- $S \to \mathbb{M} \times (\mathbb{M}^S)^A$

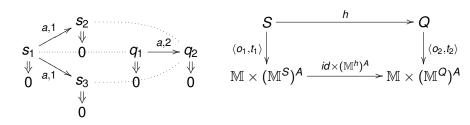
M⁻: monoidal exponentiation functor

For a set X: $M^X = \{f \mid f : X \to \mathbb{M}, f \text{ with finite support}\}.$

For a function $h: X \to Y$, \mathbb{M}^h maps each function $\phi \in \mathbb{M}^X$ to ϕ^h , defined as

$$\phi^h(q) = \sum_{s' \in h^{-1}(q)} \phi(s')$$

Morphism example



For s_1 :

$$h^{-1}(q_2) = \{s_2, s_3\}$$

$$t_1(s_1)(a))^h(q_2) =$$

$$t_1(s_1)(a)(s_2) + t_1(s_1)(a)(s_3) = 2 =$$

$$t_2(q_1)(a)(q_2) = t_2(h(s_1))(a)(q_2)$$

$$\phi^h(q) = \sum_{s' \in h^{-1}(q)} \phi(s')$$

 s_2 and s_3 : trivial.

Morphism example

For
$$s_1$$
: $(t_1(s_1)(a))^h = t_2(h(s_1))(a)$
 $h^{-1}(q_2) = \{s_2, s_3\}$
 $t_1(s_1)(a))^h(q_2) =$
 $t_1(s_1)(a)(s_2) + t_1(s_1)(a)(s_3) = 2 =$
 $t_2(q_1)(a)(q_2) = t_2(h(s_1))(a)(q_2)$
 $\phi^h(q) = \sum_{s' \in h^{-1}(q)} \phi(s')$

 s_2 and s_3 : trivial

Morphism example

For
$$s_1$$
: $(t_1(s_1)(a))^h = t_2(h(s_1))(a)$
 $h^{-1}(q_2) = \{s_2, s_3\}$
 $t_1(s_1)(a))^h(q_2) =$
 $t_1(s_1)(a)(s_2) + t_1(s_1)(a)(s_3) = 2 =$
 $t_2(q_1)(a)(q_2) = t_2(h(s_1))(a)(q_2)$
 $\phi^h(q) = \sum_{s' \in h^{-1}(q)} \phi(s')$

 s_2 and s_3 : trivial.

And now what?

For polynomial coalgebras

$$G:: = Id \mid B \mid G_1 \times G_2 \mid G_1 + G_2 \mid G^A$$

we have a generalization of Kleene's theorem and Kleene algebras.

Can we add M⁻ in a similar way? Almost!

And now what?

For polynomial coalgebras

$$G:: = Id \mid B \mid G_1 \times G_2 \mid G_1 + G_2 \mid G^A$$

we have a generalization of Kleene's theorem and Kleene algebras.

Can we add M[−] in a similar way? Almost!

And now what?

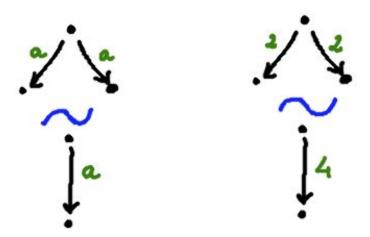
For polynomial coalgebras

$$G:: = Id \mid B \mid G_1 \times G_2 \mid G_1 + G_2 \mid G^A$$

we have a generalization of Kleene's theorem and Kleene algebras.

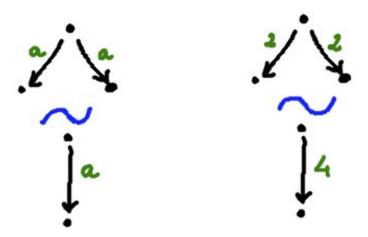
Can we add M[−] in a similar way? Almost!

What is different about these *quantitative systems* systems?



Idempotency does not hold anymore: problem for Kleene's theorem and axiomatization.

What is different about these *quantitative systems* systems?



Idempotency does not hold anymore: problem for Kleene's theorem and axiomatization.

Recall...

Recall...

Operational semantics: $\lambda_G : Exp_G \rightarrow G(Exp_G)$

Recall...

Operational semantics: $\lambda_G : Exp_G \to G(Exp_G)$ Axiomatization:

$$\begin{array}{lll}
\varepsilon_{1} \oplus \varepsilon_{2} & = & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & = & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & = & \varepsilon_{1} \\
\varepsilon \oplus \emptyset & = & \varepsilon
\end{array}$$

$$\mu x. \gamma = \gamma [\mu x. \gamma / x] \\
\gamma [\varepsilon / x] < \varepsilon \Rightarrow \mu x. \gamma < \varepsilon$$

Similar for $G_1 + G_2$ and G^A

Extension to M⁻

Extension to M⁻

$$\begin{split} \textit{Exp} \ni \varepsilon & ::= & \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu \textit{x}.\gamma \\ & \mid \textit{b} & \textit{B} \\ & \mid \textit{I}\langle \varepsilon \rangle \mid \textit{r}\langle \varepsilon \rangle & \textit{G}_1 \times \textit{G}_2 \\ & \mid \textit{I}[\varepsilon] \mid \textit{r}[\varepsilon] & \textit{G}_1 + \textit{G}_2 \\ & \mid \textit{a}(\varepsilon) & \textit{G}^A \\ & \mid \textit{m} \cdot \varepsilon & \texttt{M}^- \end{split}$$

Axiomatization:

$$\begin{array}{lll} \varepsilon_{1} \oplus \varepsilon_{2} & = & \varepsilon_{2} \oplus \varepsilon_{1} \\ \varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & = & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\ \varepsilon_{1} \oplus \varepsilon_{1} & = & \varepsilon_{1}, & \text{if } \varepsilon \in \mathsf{Exp}_{\mathsf{G}} \\ \varepsilon \oplus \emptyset & = & \varepsilon \\ & \vdots \\ 0 \cdot \varepsilon \equiv \emptyset \\ (m_{1} \cdot \varepsilon) \oplus (m_{2} \cdot \varepsilon) = (m_{1} + m_{2}) \cdot \varepsilon \end{array}$$

Expressions for weighted automata – $\mathbb{M} \times (\mathbb{M}^{ld})^A$

$$(\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \equiv \varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3})$$

$$\varepsilon_{1} \oplus \varepsilon_{2} \equiv \varepsilon_{2} \oplus \varepsilon_{1}$$

$$\varepsilon \oplus \emptyset \equiv \varepsilon$$

$$a(m \cdot \varepsilon) \oplus a(m' \cdot \varepsilon) \equiv a((m + m') \cdot \varepsilon)$$

$$m \oplus m' \equiv m + m'$$

$$a(0 \cdot \varepsilon) \equiv \emptyset \qquad 0 \equiv \emptyset$$

$$\varepsilon[\mu x.\varepsilon/x] \equiv \mu x.\varepsilon$$

$$\gamma[\varepsilon/x] \equiv \varepsilon \Rightarrow \mu x.\gamma \equiv \varepsilon$$

 $\varepsilon :: = \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon \mid x \mid m \mid a(m \cdot \varepsilon)$

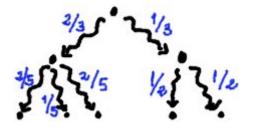
Note: s and $a(m \cdot \varepsilon)$ abbreviate I(s) and $r(a(m \cdot \varepsilon))$

where $m \in \mathbb{M}$ and $a \in A$

Probabilistic systems I

Markov chains

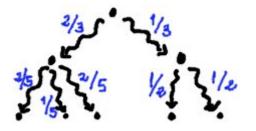
• Generalization of labelled transition systems: labels taken from $\mathbb R$ and sum equals 1.



Probabilistic systems I

Markov chains

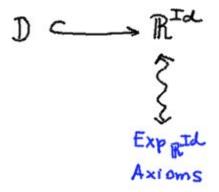
• Generalization of labelled transition systems: labels taken from $\mathbb R$ and sum equals 1.



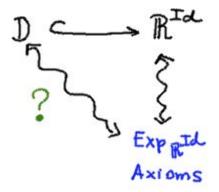
Markov Chains as coalgebras

D(X) =set of probability distributions over X with finite support

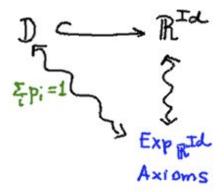
D as monoidal exponentiation



D as monoidal exponentiation



D as monoidal exponentiation



Probabilistic systems II

MC	\mathcal{D}_{ω}	Markov chains
DA	$(\mathcal{I}d+1)^A$	deterministic automata
NA	$\mathcal{P}(A \times \mathcal{I}d) \cong \mathcal{P}^A$	non-deterministic automata, LTSs
React	$(\mathcal{D}_{\omega}+1)^{A}$	reactive systems [15,24]
Gen	$\mathcal{D}_{\omega}(A \times \mathcal{I}d) + 1$	generative systems [24]
Str	$\mathcal{D}_{\omega} + (A \times \mathcal{I}d) + 1$	stratified systems [24]
Alt	$\mathcal{D}_{\omega} + \mathcal{P}(A \times \mathcal{I}d)$	alternating systems [8]
Var	$(\mathcal{D}_{\omega}(A \times \mathcal{I}d) + \mathcal{P}(A \times \mathcal{I}d))/\bowtie$	Vardi systems [25]
SSeg	$\mathcal{P}(A \times \mathcal{D}_{\omega})$	simple Segala systems [22,21]
Seg	$\mathcal{PD}_{\omega}(A \times \mathcal{I}d)$	Segala systems [22,21]
Bun	$\mathcal{D}_{\omega}\mathcal{P}(A \times \mathcal{I}d)$	bundle systems [4]
PZ	$\mathcal{P}\mathcal{D}_{\omega}\mathcal{P}(A \times \mathcal{I}d)$	Pnueli-Zuck systems [18]
MG	$PD_{\omega}P(A \times Id + Id)$	most general systems

Probabilistic systems II

MC	\mathcal{D}_{ω}	Markov chains
DA	$(\mathcal{I}d+1)^A$	deterministic automata
NA	$\mathcal{P}(A \times \mathcal{I}d) \cong \mathcal{P}^A$	non-deterministic automata, LTSs
React	$(\mathcal{D}_{\omega}+1)^{A}$	reactive systems [15,24]
Gen	$\mathcal{D}_{\omega}(A \times \mathcal{I}d) + 1$	generative systems [24]
Str	$\mathcal{D}_{\omega} + (A \times \mathcal{I}d) + 1$	stratified systems [24]
Alt	$\underline{\mathcal{D}_{\omega}} + \underline{\mathcal{P}}(A \times \mathcal{I}d)$	alternating systems [8]
Var	$(\mathcal{D}_{\omega}(A \times \mathcal{I}d) + \mathcal{P}(A \times \mathcal{I}d))/\bowtie$	Vardi systems [25]
SSeg	$\mathcal{P}(A \times \mathcal{D}_{\omega})$	simple Segala systems [22,21]
Seg	$\mathcal{PD}_{\omega}(A \times \mathcal{I}d)$	Segala systems [22,21]
Bun	$\mathcal{D}_{\omega}\mathcal{P}(A \times \mathcal{I}d)$	bundle systems [4]
PZ	$\mathcal{P}\mathcal{D}_{\omega}\mathcal{P}(A \times \mathcal{I}d)$	Pnueli-Zuck systems [18]
MG	$PD_{\omega}P(A \times Id + Id)$	most general systems

Probabilistic systems III

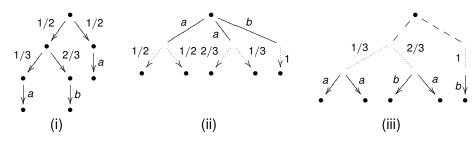


Figure: (i) A stratified system— $D(Id) + (B \times Id) + 1$, (ii) a simple Segala system— $\mathcal{P}(D(Id))^A$ and (iii) a Pnueli-Zuck system— $\mathcal{P}(D(\mathcal{P}Id))^A$

Segala systems — $\mathcal{P}(D_{\omega}(Id))^A$

Exercise: board. ($\mathcal{P} = 2^-$)

$$\varepsilon ::= \emptyset \mid \varepsilon \boxplus \varepsilon \mid \mu x.\varepsilon \mid x \mid a(\{\varepsilon'\})$$

$$\varepsilon' ::= \bigoplus_{i \in 1 \dots n} p_i \cdot \varepsilon_i$$

$$\begin{aligned} &(\varepsilon_1 \boxplus \varepsilon_2) \boxplus \varepsilon_3 \equiv \varepsilon_1 \boxplus (\varepsilon_2 \boxplus \varepsilon_3) \\ &(\varepsilon_1' \oplus \varepsilon_2') \oplus \varepsilon_3' \equiv \varepsilon_1' \oplus (\varepsilon_2' \oplus \varepsilon_3') \\ &(\rho_1 \cdot \varepsilon) \oplus (\rho_2 \cdot \varepsilon) \equiv (\rho_1 + \rho_2) \cdot \varepsilon \end{aligned}$$

where
$$a \in A$$
, $p_i \in (0, 1]$ and $\sum_{i \in 1...n} p_i = 1$

$$\varepsilon_1 \boxplus \varepsilon_2 \equiv \varepsilon_2 \boxplus \varepsilon_1 \qquad \qquad \varepsilon \boxplus \emptyset \equiv \varepsilon$$
 $\varepsilon'_1 \oplus \varepsilon'_2 \equiv \varepsilon'_2 \oplus \varepsilon'_1$

$$\gamma[\varepsilon/X] \equiv \varepsilon \Rightarrow \mu X. \gamma \equiv \varepsilon$$

Segala systems — $\mathcal{P}(D_{\omega}(Id))^A$

Exercise: board. ($\mathcal{P}=2^-$)

$$\varepsilon :: = \emptyset \mid \varepsilon \boxplus \varepsilon \mid \mu x.\varepsilon \mid x \mid a(\{\varepsilon'\})$$

$$\varepsilon' :: = \bigoplus_{i \in 1 \dots n} p_i \cdot \varepsilon_i$$

$$\begin{aligned} &(\varepsilon_{1} \boxplus \varepsilon_{2}) \boxplus \varepsilon_{3} \equiv \varepsilon_{1} \boxplus (\varepsilon_{2} \boxplus \varepsilon_{3}) \\ &(\varepsilon'_{1} \oplus \varepsilon'_{2}) \oplus \varepsilon'_{3} \equiv \varepsilon'_{1} \oplus (\varepsilon'_{2} \oplus \varepsilon'_{3}) \\ &(p_{1} \cdot \varepsilon) \oplus (p_{2} \cdot \varepsilon) \equiv (p_{1} + p_{2}) \cdot \varepsilon \end{aligned}$$

$$(p_1 \cdot \varepsilon) \oplus (p_2 \cdot \varepsilon) \equiv (p_1 + p_2) \cdot \varepsilon$$

 $\varepsilon[\mu x.\varepsilon/x] \equiv \mu x.\varepsilon$

$$\varepsilon_1 \boxplus \varepsilon_2 \equiv \varepsilon_2 \boxplus \varepsilon_1$$

$$\varepsilon_1 \boxplus \varepsilon_2 \equiv \varepsilon_2 \boxplus \varepsilon_1$$
 $\varepsilon \boxplus \emptyset \equiv \varepsilon$
 $\varepsilon'_1 \oplus \varepsilon'_2 \equiv \varepsilon'_2 \oplus \varepsilon'_1$

where $a \in A$, $p_i \in (0,1]$ and $\sum_{i \in 1} p_i = 1$

$$c_1 \oplus c_2 = c_2 \oplus c_1$$

$$\gamma[\varepsilon/\mathbf{X}] \equiv \varepsilon \Rightarrow \mu \mathbf{X}. \gamma \equiv \varepsilon$$

Probabilistic systems – some remarks

- The interplay between non-determinism and probabilities was a serious issue in existing work
- Coalgebraically it is simple and arises from functor composition
- Axiomatizations and expressions existed for some of the systems mentioned but not uniformly.

Conclusions

- Extended our previous framework to quantitative systems.
- Uniform derivation of language and axioms for probabilistic systems: opens the door to new results.
- Not trivial due to lack of idempotency (hidden detail).

Remark: Implementation of this is much harder than for the previous framework, because of extra conditions (e.g. $\sum p_i = 1$).

Thanks!

Conclusions

- Extended our previous framework to quantitative systems.
- Uniform derivation of language and axioms for probabilistic systems: opens the door to new results.
- Not trivial due to lack of idempotency (hidden detail).

Remark: Implementation of this is much harder than for the previous framework, because of extra conditions (e.g. $\sum p_i = 1$).

Thanks!