Weighted automata coalgebraically

Filippo Bonchi⁴ Michele Boreale⁵ Marcello Bonsangue^{1,2} Jan Rutten^{1,3} Alexandra Silva¹

¹Centrum Wiskunde en Informatica
 ²LIACS - Leiden University
 ³Radboud Universiteit Nijmegen
 ⁴INRIA Saclay - LIX, École Polytechnique
 ⁵Università di Firenze

Braunschweig, August 2010

Motivation

- Weighted automata are transition systems with many applications: speech processing, image recognition, information theory, . . .
- Interesting questions: correct notion of equivalence, algorithms for minimization, . . .

Motivation

- Weighted automata are transition systems with many applications: speech processing, image recognition, information theory, ...
- Interesting questions: correct notion of equivalence, algorithms for minimization, . . .

Motivation (cont'd)

- Modelling systems as coalgebras:
 - The type of the system determines a canonical notion of equivalence . . .
 - ... and a universe of behaviours (final coalgebra).

Goals of this talk:

- Show how to model weighted automata as coalgebras in two different settings;
- Show the canonical equivalences derived in each;
- An algorithm for minimization

Motivation (cont'd)

- Modelling systems as coalgebras:
 - The type of the system determines a canonical notion of equivalence . . .
 - ... and a universe of behaviours (final coalgebra).

Goals of this talk:

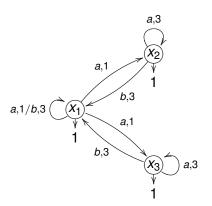
- Show how to model weighted automata as coalgebras in two different settings:
- Show the canonical equivalences derived in each;
- An algorithm for minimization.

Weighted automata

A *weighted automaton* with input alphabet *A* is a pair $(X, \langle o, t \rangle)$, where

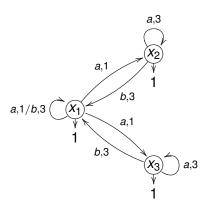
- X is a set of states;
- $o: X \to \mathbb{K}$ is an output function associating to each state its output weight and
- $t: X \to (\mathbb{K}^X)^A$ is the transition relation that associates a weight to each transition.

$$\mathbb{K} = \mathbb{R}, A = \{a, b\}$$



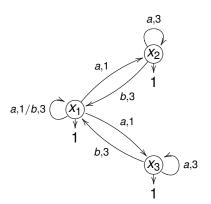
$$O_X = \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \quad T_{X_a} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix} \quad T_{X_b} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbb{K} = \mathbb{R}, A = \{a, b\}$$



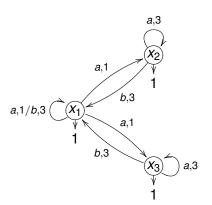
$$O_X = \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \quad T_{X_a} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix} \quad T_{X_b} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbb{K} = \mathbb{R}, A = \{a, b\}$$



$$O_X = \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \quad T_{X_a} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix} \quad T_{X_b} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbb{K} = \mathbb{R}, A = \{a, b\}$$



$$O_X = \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{pmatrix} \quad T_{X_a} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix} \quad T_{X_b} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Equivalence I: weighted bisimilarity

Definition

Let $(X, \langle o, t \rangle)$ be a weighted automaton. An equivalence relation $R \subseteq X \times X$ is a *weighted bisimulation* if for all $(x_1, x_2) \in R$, it holds that:

- $o(x_1) = o(x_2),$
- $\forall a \in A, \, x' \in X, \, \sum_{x'' \in [x']_R} t(x_1)(a)(x'') = \sum_{x'' \in [x']_R} t(x_2)(a)(x'').$

 $[x]_R$: equivalence class of x with respect to R.

The definition only makes sense if the automaton has finite branching.

Equivalence I: weighted bisimilarity

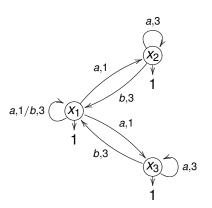
Definition

Let $(X, \langle o, t \rangle)$ be a weighted automaton. An equivalence relation $R \subseteq X \times X$ is a *weighted bisimulation* if for all $(x_1, x_2) \in R$, it holds that:

- $o(x_1) = o(x_2),$
- $\forall a \in A, \, x' \in X, \, \sum_{x'' \in [x']_R} t(x_1)(a)(x'') = \sum_{x'' \in [x']_R} t(x_2)(a)(x'').$

 $[x]_{R}$: equivalence class of x with respect to R.

The definition only makes sense if the automaton has finite branching.

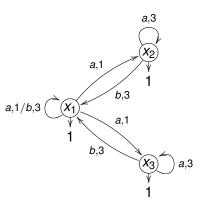


$$R = \{\langle x_i, x_j \rangle \mid x_i, x_j \in X\}$$

$$\langle x_i, x_j \rangle \in R$$

$$o(x_i) = o(x_i) = 1$$

$$[x_i]_R = [x_i]_R = X$$

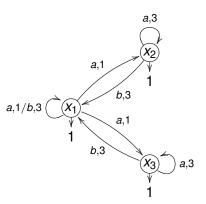


$$R = \{\langle x_i, x_j \rangle \mid x_i, x_j \in X\}$$

$$\langle x_i, x_i \rangle \in R$$

$$o(x_i) = o(x_i) = 1$$

$$[x_i]_R = [x_i]_R = X$$

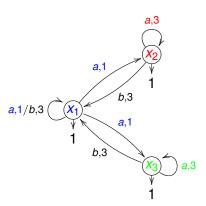


$$R = \{\langle x_i, x_j \rangle \mid x_i, x_j \in X\}$$

$$\langle x_i, x_i \rangle \in R$$

$$o(x_i) = o(x_i) = 1$$

$$[x_i]_R = [x_i]_R = X$$



$$R = \{\langle x_i, x_j \rangle \mid x_i, x_j \in X\}$$

$$\langle x_i, x_i \rangle \in R$$

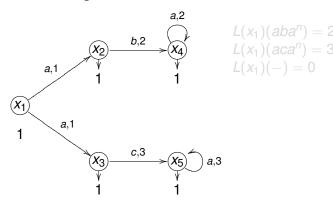
$$o(x_i) = o(x_i) = 1$$

$$[x_i]_R = [x_i]_R = X$$

Equivalence II: weighted language equivalence

Given a word $w \in A^*$, we defined its weight in a state x of a weighted automaton $(X, \langle o, t \rangle)$ inductively:

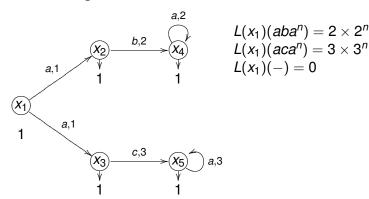
- $L(x)(aw) = \sum_{x' \in X} t(x)(a)(x') \times L(w)(x')$



Equivalence II: weighted language equivalence

Given a word $w \in A^*$, we defined its weight in a state x of a weighted automaton $(X, \langle o, t \rangle)$ inductively:

- $L(x)(aw) = \sum_{x' \in X} t(x)(a)(x') \times L(w)(x')$



Next...

- Model weighted automata as coalgebras;
- Show how to derive the equivalences above canonically.

A coalgebra primer

Definition (Coalgebra)

Given a functor $\mathcal{G} \colon C \to C$ on a category C, a \mathcal{G} -coalgebra is an object X in C together with an arrow $f \colon X \to \mathcal{G}X$.

For many categories and functors, such pair (X, f) represents a transition system, the type of which is determined by the functor \mathcal{G} .

- Deterministic automata $(X, \langle o, t \rangle \colon X \to 2 \times X^A)$ $\mathcal{G}(X) = 2 \times X^A$
- Labeled transition systems $(X, t: X \to (\mathcal{P}_{\omega}X)^A)$ $\mathcal{G}(X) = \mathcal{P}_{\omega}(X)^A$

A coalgebra primer

Definition (Coalgebra)

Given a functor $\mathcal{G} \colon C \to C$ on a category C, a \mathcal{G} -coalgebra is an object X in C together with an arrow $f \colon X \to \mathcal{G}X$.

For many categories and functors, such pair (X, f) represents a transition system, the type of which is determined by the functor \mathcal{G} .

- Deterministic automata $(X, \langle o, t \rangle \colon X \to 2 \times X^A)$ $\mathcal{G}(X) = 2 \times X^A$
- Labeled transition systems $(X, t: X \to (\mathcal{P}_{\omega}X)^A)$ $\mathcal{G}(X) = \mathcal{P}_{\omega}(X)^A$
- .

A coalgebra primer

Definition (Coalgebra)

Given a functor $\mathcal{G} \colon C \to C$ on a category C, a \mathcal{G} -coalgebra is an object X in C together with an arrow $f \colon X \to \mathcal{G}X$.

For many categories and functors, such pair (X, f) represents a transition system, the type of which is determined by the functor \mathcal{G} .

- Deterministic automata $(X, \langle o, t \rangle \colon X \to 2 \times X^A)$ $\mathcal{G}(X) = 2 \times X^A$
- Labeled transition systems $(X, t: X \to (\mathcal{P}_{\omega}X)^A)$ $\mathcal{G}(X) = \mathcal{P}_{\omega}(X)^A$
- •

Definition (Coalgebra homomorphism)

A \mathcal{G} -homomorphism from a \mathcal{G} -coalgebra (X, f) to a \mathcal{G} -coalgebra (Y, g) is an arrow $h: X \to Y$ preserving the transition structure, *i.e.*, such that the following diagram commutes.

Definition (Final coalgebra)

A \mathcal{G} -coalgebra (Ω, ω) is said to be *final* if for any \mathcal{G} -coalgebra (X, f) there exists a unique \mathcal{G} -homomorphism $\llbracket - \rrbracket_V^{\mathcal{G}} \colon X \to \Omega$.

Definition (Coalgebra homomorphism)

A \mathcal{G} -homomorphism from a \mathcal{G} -coalgebra (X, f) to a \mathcal{G} -coalgebra (Y, g) is an arrow $h: X \to Y$ preserving the transition structure, *i.e.*, such that the following diagram commutes.

Definition (Final coalgebra)

A \mathcal{G} -coalgebra (Ω, ω) is said to be *final* if for any \mathcal{G} -coalgebra (X, f) there exists a unique \mathcal{G} -homomorphism $\llbracket - \rrbracket_X^{\mathcal{G}} \colon X \to \Omega$.

Final coalgebras can be viewed as the universe of all possible \mathcal{G} -behaviours: the unique homomorphism $\llbracket - \rrbracket_X^{\mathcal{G}} \colon X \to \Omega$ maps every state of a coalgebra X to a canonical representative of its behaviour.

Definition (Behavioural equivalence

Two states $x_1, x_2 \in X$ are \mathcal{G} -behaviourally equivalent $(x_1 \approx_{\mathcal{G}} x_2)$ iff $[\![x_1]\!]_X^{\mathcal{G}} = [\![x_2]\!]_X^{\mathcal{G}}$.

Final coalgebras can be viewed as the universe of all possible \mathcal{G} -behaviours: the unique homomorphism $\llbracket - \rrbracket_X^{\mathcal{G}} \colon X \to \Omega$ maps every state of a coalgebra X to a canonical representative of its behaviour.

Definition (Behavioural equivalence)

Two states $x_1, x_2 \in X$ are \mathcal{G} -behaviourally equivalent $(x_1 \approx_{\mathcal{G}} x_2)$ iff $[\![x_1]\!]_X^{\mathcal{G}} = [\![x_2]\!]_X^{\mathcal{G}}$.

Weighted automata as Set-coalgebras

Goal: Show a functor $\mathcal{W} \colon Set \to Set$ such that $\approx_{\mathcal{W}}$ coincides with weighted bisimilarity.

Definition (Field valuation Functor)

Let \mathbb{K} be a field. The field valuation functor $\mathbb{K}_{\omega}^-\colon Set \to Set$ is defined as follows. For each set X, \mathbb{K}_{ω}^X is the set of functions from X to \mathbb{K} with finite support. For each function $h\colon X\to Y$, $\mathbb{K}_{\omega}^h\colon \mathbb{K}_{\omega}^X\to \mathbb{K}_{\omega}^Y$ is the function mapping each $\varphi\in\mathbb{K}_{\omega}^X$ into $\varphi^h\in\mathbb{K}_{\omega}^Y$ defined, for all $y\in Y$, by

$$\varphi^h(y) = \sum_{x' \in h^{-1}(y)} \varphi(x')$$

Weighted automata as Set-coalgebras

Goal: Show a functor $\mathcal{W} \colon Set \to Set$ such that $\approx_{\mathcal{W}}$ coincides with weighted bisimilarity.

Definition (Field valuation Functor)

Let \mathbb{K} be a field. The field valuation functor $\mathbb{K}_{\omega}^-\colon Set \to Set$ is defined as follows. For each set X, \mathbb{K}_{ω}^X is the set of functions from X to \mathbb{K} with finite support. For each function $h\colon X\to Y$, $\mathbb{K}_{\omega}^h\colon \mathbb{K}_{\omega}^X\to \mathbb{K}_{\omega}^Y$ is the function mapping each $\varphi\in\mathbb{K}_{\omega}^X$ into $\varphi^h\in\mathbb{K}_{\omega}^Y$ defined, for all $y\in Y$, by

$$\varphi^h(y) = \sum_{x' \in h^{-1}(y)} \varphi(x')$$

Weighted automata as Set-coalgebras

Weighted automata are coalgebras for the functor $\mathcal{W} = \mathbb{K} \times (\mathbb{K}_{\omega}^{-})^{A} \colon Set \to Set.$

Every function $f: X \to \mathcal{W}(X)$ consists of a pair of functions $\langle o, t \rangle$ with $o: X \to \mathbb{K}$ and $t: X \to (\mathbb{K}^X_\omega)^A$.

Canonical equivalence

Proposition

The functor \mathcal{W} has a final coalgebra.

Theorem

Let $(X, \langle o, t \rangle)$ be a weighted automaton and let x_1, x_2 be two states in X. Then, x_1 and x_2 are weighted bisimilar iff $x_1 \approx_{\mathcal{W}} x_2$, i.e., $\llbracket x_1 \rrbracket_{\mathcal{W}}^{\mathcal{W}} = \llbracket x_2 \rrbracket_{\mathcal{W}}^{\mathcal{W}}$.

Canonical equivalence

Proposition

The functor \mathcal{W} has a final coalgebra.

Theorem

Let $(X, \langle o, t \rangle)$ be a weighted automaton and let x_1, x_2 be two states in X. Then, x_1 and x_2 are weighted bisimilar iff $x_1 \approx_{\mathcal{W}} x_2$, i.e., $[\![x_1]\!]_{\mathcal{W}}^{\mathcal{W}} = [\![x_2]\!]_{\mathcal{W}}^{\mathcal{W}}$.

Weighted automata as Vect-coalgebras

Goal: Coalgebraic characterization of weighted language equivalence.

- Introduce linear weighted automata (as coalgebras);
- Show the canonical equivalence is weighted language equivalence;
- Show a construction from weighted automata to linear weighted automata.

Weighted automata as Vect-coalgebras

Goal: Coalgebraic characterization of weighted language equivalence.

- Introduce linear weighted automata (as coalgebras);
- Show the canonical equivalence is weighted language equivalence;
- Show a construction from weighted automata to linear weighted automata.

Linear weighted automata

Definition (LWA)

A linear weighted automaton (LWA, for short) with input alphabet A over the field \mathbb{K} is a coalgebra for the functor $\mathcal{L} = \mathbb{K} \times id^A$: $Vect \rightarrow Vect$.

A LWA is a pair $(V, \langle o, t \rangle)$, where:

- V is a vector space;
- ② $o: V \to \mathbb{K}$ is a linear map associating to each state its output weight;
- ① $t: V \to V^A$ is a linear map that for each input $a \in A$ associates a next state (i.e., a vector) in V.

Linear weighted automata

Definition (LWA)

A *linear weighted automaton* (LWA, for short) with input alphabet A over the field \mathbb{K} is a coalgebra for the functor $\mathcal{L} = \mathbb{K} \times id^A$: $Vect \rightarrow Vect$.

A LWA is a pair $(V, \langle o, t \rangle)$, where:

- V is a vector space;
- ② $o: V \to \mathbb{K}$ is a linear map associating to each state its output weight;
- § $t: V \to V^A$ is a linear map that for each input $a \in A$ associates a next state (i.e., a vector) in V.

Equivalence

The final \mathcal{L} -coalgebra

• \mathbb{K}^{A^*} carries a vector space structure: the sum of two languages $\sigma_1, \sigma_2 \in \mathbb{K}^{A^*}$ is the language $\sigma_1 + \sigma_2$ defined for each word $w \in A^*$ as $\sigma_1 + \sigma_2(w) = \sigma_1(w) + \sigma_2(w)$;

The final \mathcal{L} -coalgebra

• \mathbb{K}^{A^*} carries a vector space structure: the sum of two languages $\sigma_1, \sigma_2 \in \mathbb{K}^{A^*}$ is the language $\sigma_1 + \sigma_2$ defined for each word $w \in A^*$ as $\sigma_1 + \sigma_2(w) = \sigma_1(w) + \sigma_2(w)$; the product of a language σ for a scalar $k \in \mathbb{K}$ is $k\sigma$ defined as $k\sigma(w) = k \cdot \sigma(w)$;

The final \mathcal{L} -coalgebra

• \mathbb{K}^{A^*} carries a vector space structure: the sum of two languages $\sigma_1, \sigma_2 \in \mathbb{K}^{A^*}$ is the language $\sigma_1 + \sigma_2$ defined for each word $w \in A^*$ as $\sigma_1 + \sigma_2(w) = \sigma_1(w) + \sigma_2(w)$; the product of a language σ for a scalar $k \in \mathbb{K}$ is $k\sigma$ defined as $k\sigma(w) = k \cdot \sigma(w)$; the element 0 of \mathbb{K}^{A^*} is the language mapping each word into the 0 of \mathbb{K} .

The final \mathcal{L} -coalgebra

- \mathbb{K}^{A^*} carries a vector space structure: the sum of two languages $\sigma_1, \sigma_2 \in \mathbb{K}^{A^*}$ is the language $\sigma_1 + \sigma_2$ defined for each word $w \in A^*$ as $\sigma_1 + \sigma_2(w) = \sigma_1(w) + \sigma_2(w)$; the product of a language σ for a scalar $k \in \mathbb{K}$ is $k\sigma$ defined as $k\sigma(w) = k \cdot \sigma(w)$; the element 0 of \mathbb{K}^{A^*} is the language mapping each word into the 0 of \mathbb{K} .
- The empty function emp: $\mathbb{K}^{A^*} \to \mathbb{K}$ and the derivative function $der: \mathbb{K}^{A^*} \to (\mathbb{K}^{A^*})^A$ are defined for all $\sigma \in \mathbb{K}^{A^*}$, $a \in A$ as

$$emp(\sigma) = \sigma(\epsilon) \quad der(\sigma)(a) = \sigma_a$$

where $\sigma_a:A^* \to \mathbb{K}$ denotes the *a-derivative* of σ that is defined for all $w \in A^*$ as

$$\sigma_a(w) = \sigma(aw).$$

The final \mathcal{L} -coalgebra

- \mathbb{K}^{A^*} carries a vector space structure: the sum of two languages $\sigma_1, \sigma_2 \in \mathbb{K}^{A^*}$ is the language $\sigma_1 + \sigma_2$ defined for each word $w \in A^*$ as $\sigma_1 + \sigma_2(w) = \sigma_1(w) + \sigma_2(w)$; the product of a language σ for a scalar $k \in \mathbb{K}$ is $k\sigma$ defined as $k\sigma(w) = k \cdot \sigma(w)$; the element 0 of \mathbb{K}^{A^*} is the language mapping each word into the 0 of \mathbb{K} .
- The empty function emp: $\mathbb{K}^{A^*} \to \mathbb{K}$ and the derivative function $der \colon \mathbb{K}^{A^*} \to (\mathbb{K}^{A^*})^A$ are defined for all $\sigma \in \mathbb{K}^{A^*}$, $a \in A$ as

$$emp(\sigma) = \sigma(\epsilon) \quad der(\sigma)(a) = \sigma_a$$

where $\sigma_a:A^* \to \mathbb{K}$ denotes the *a-derivative* of σ that is defined for all $w \in A^*$ as

$$\sigma_a(\mathbf{w}) = \sigma(a\mathbf{w}).$$

Proposition

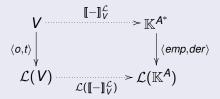
The maps $emp: \mathbb{K}^{A^*} \to \mathbb{K}$ and $der: \mathbb{K}^{A^*} \to (\mathbb{K}^{A^*})^A$ are linear.

Equivalence (cont'd)

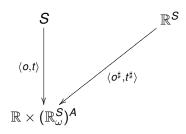
 $(\mathbb{K}^{A^*}, \langle emp, der \rangle)$ is an \mathcal{L} -coalgebra.

Theorem (Finality)

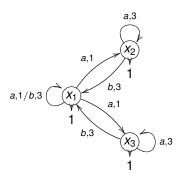
From every \mathcal{L} -coalgebra $(V, \langle o, t \rangle)$ there exists a unique \mathcal{L} -homomorphism into $(\mathbb{K}^{A^*}, \langle emp, der \rangle)$.



From weighted automata to linear weighted automata



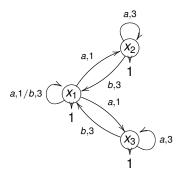
$$o^{\sharp}(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}) = \sum v_i \times o(s_i)$$
 $t^{\sharp}(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix})(a)(s_j) = \sum v_i \times t(s_i)(a)(s_j)$



$$O_X = (1 \ 1 \ 1 \) \ T_{X_a} = \begin{pmatrix} 1 \ 0 \ 0 \ 1 \ 3 \ 0 \ 1 \ 0 \ 3 \end{pmatrix} \ T_{X_b} = \begin{pmatrix} 3 \ 3 \ 3 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

$$V = \{k_1x_1 + k_2x_2 + k_3x_3 \mid k_1, k_2, k_3 \in \mathbb{K}\}$$

$$o^{\sharp}(v) = o^{\sharp}(k_1x_1 + k_2x_2 + k_3x_3) = k_1 + k_2 + k_3$$



$$O_X = (1 \ 1 \ 1 \) \ T_{X_a} = \begin{pmatrix} 1 \ 0 \ 0 \ 1 \ 3 \ 0 \ \end{pmatrix} \ T_{X_b} = \begin{pmatrix} 3 \ 3 \ 3 \ 0 \ 0 \ 0 \ \end{pmatrix}$$

$$V = \{k_1x_1 + k_2x_2 + k_3x_3 \mid k_1, k_2, k_3 \in \mathbb{K}\}$$

$$o^{\sharp}(v) = o^{\sharp}(k_1x_1 + k_2x_2 + k_3x_3) = k_1 + k_2 + k_3$$

$$= O_X \times \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$



$$O_X = (1 \ 1 \ 1 \) \ T_{X_a} = \begin{pmatrix} 1 \ 0 \ 0 \ 1 \ 3 \ 0 \ \end{pmatrix} \ T_{X_b} = \begin{pmatrix} 3 \ 3 \ 3 \ 0 \ 0 \ 0 \ \end{pmatrix}$$

$$V = \{k_1x_1 + k_2x_2 + k_3x_3 \mid k_1, k_2, k_3 \in \mathbb{K}\}$$

$$o^{\sharp}(v) = o^{\sharp}(k_1x_1 + k_2x_2 + k_3x_3) = k_1 + k_2 + k_3$$

$$= O_X \times \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$

$$t^{\sharp}(v)(a) = k_1t_X(x_1)(a) + k_2t_X(x_2)(a) + k_3t_X(x_3)(a)$$

$$= k_1(x_1 + x_2 + x_3) + k_23x_2 + k_33x_3$$

$$a_{,1}/b_{,3}$$

$$a_{,1}/b_{,3}/b_{,3}$$

$$O_X = (1 \ 1 \ 1 \) \ T_{X_a} = \begin{pmatrix} 1 \ 0 \ 0 \ 1 \ 3 \ 0 \ \end{pmatrix} \ T_{X_b} = \begin{pmatrix} 3 \ 3 \ 3 \ 0 \ 0 \ 0 \ \end{pmatrix}$$

$$V = \{k_1x_1 + k_2x_2 + k_3x_3 \mid k_1, k_2, k_3 \in \mathbb{K}\}$$

$$O^{\sharp}(v) = O^{\sharp}(k_1x_1 + k_2x_2 + k_3x_3) = k_1 + k_2 + k_3$$

$$= O_X \times \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$

$$t^{\sharp}(v)(a) = k_1t_X(x_1)(a) + k_2t_X(x_2)(a) + k_3t_X(x_3)(a)$$

$$= k_1(x_1 + x_2 + x_3) + k_23x_2 + k_33x_3$$

$$= T_{X_a} \times \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$

$$= T_{X_a} \times \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$

Alexandra Silva (CWI)

 $O_X = (1 \ 1 \ 1 \) \ T_{X_a} = \begin{pmatrix} 1 \ 0 \ 0 \ 1 \ 3 \ 0 \ \end{pmatrix} \ T_{X_b} = \begin{pmatrix} 3 \ 3 \ 3 \ 0 \ 0 \ 0 \ \end{pmatrix}$

$$V = \{k_{1}x_{1} + k_{2}x_{2} + k_{3}x_{3} \mid k_{1}, k_{2}, k_{3} \in \mathbb{K}\}$$

$$O^{\sharp}(v) = O^{\sharp}(k_{1}x_{1} + k_{2}x_{2} + k_{3}x_{3}) = k_{1} + k_{2} + k_{3}$$

$$= O_{X} \times \begin{pmatrix} k_{1} \\ k_{2} \\ k_{3} \end{pmatrix}$$

$$t^{\sharp}(v)(a) = k_{1}t_{X}(x_{1})(a) + k_{2}t_{X}(x_{2})(a) + k_{3}t_{X}(x_{3})(a)$$

$$= k_{1}(x_{1} + x_{2} + x_{3}) + k_{2}3x_{2} + k_{3}3x_{3}$$

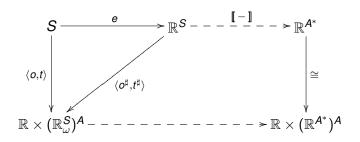
$$= T_{X_{a}} \times \begin{pmatrix} k_{1} \\ k_{2} \\ k_{3} \end{pmatrix}$$

$$1$$

$$0_{X} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} T_{X_{a}} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} T_{X_{b}} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$0 = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

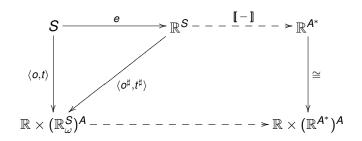
In a nutshell...



Lemma

Let $(X, \langle o, t \rangle)$ be a weighted automaton and $(\mathbb{K}_{\omega}^X, \langle o^{\sharp}, t^{\sharp} \rangle)$ be the corresponding linear weighted automaton. Then for all $x \in X$, $L(x) = [\![x]\!]_{\mathbb{K}^X}^{\mathcal{L}}$.

In a nutshell...



Lemma

Let $(X, \langle o, t \rangle)$ be a weighted automaton and $(\mathbb{K}_{\omega}^X, \langle o^{\sharp}, t^{\sharp} \rangle)$ be the corresponding linear weighted automaton. Then for all $x \in X$, $L(x) = [\![x]\!]_{\mathbb{K}^X}^{\mathcal{L}}$.

And now the connection with the previous talk...

- Solving linear systems of behavioural differential equations;
- Characterizing the final homomorphism by rational streams;
- Minimal automaton.

Conclusions

- Weighted automata characterized as coalgebras;
- Two canonical notions of equivalence;
- An algorithm for minimization.

In the paper:

- A different algorithm for minimization;
- Stream-like calculus for automata with input alphabet |A| > 1

Conclusions

- Weighted automata characterized as coalgebras;
- Two canonical notions of equivalence;
- An algorithm for minimization.

In the paper:

- A different algorithm for minimization;
- Stream-like calculus for automata with input alphabet |A| > 1