Behavioural differential equations for binary trees

Alexandra Silva

¹CWI, The Netherlands

Coalgebra Day, October 2006

Motivation

- Previous work by Jan:
 - Behavioural differential equations: a coinductive calculus of streams, automata, and power series
 - Elements of stream calculus (an extensive exercise in coinduction)
 - showed that coinduction and behavioural differential equations are effective for stream calculus
- We want to investigate if the same approach is effective for other infinite structures, e.g. infinite binary trees

What will we show?

We will show how to...

- ... develop a calculus for binary trees à la formal power series
- ... define infinite binary trees through behavioural differential equations
- ... calculate closed expressions for infinite binary trees

Formal power series

The set of infinite binary trees $-T_A$ – is the final coalgebra of

$$F(X) = X \times A \times X$$

Recall: A formal power series is a function $\sigma: X^* \to k$ where X is the set of variables (or input symbols) and k is a semiring.

For A semiring, the set T_A is a formal power series over X=2 (**Why?**), *i.e*,

$$T_A = \{ \sigma | \sigma : \mathbf{2}^* \to A \}$$

Formal power series

The set of infinite binary trees $-T_A$ – is the final coalgebra of

$$F(X) = X \times A \times X$$

Recall: A formal power series is a function $\sigma: X^* \to k$ where X is the set of variables (or input symbols) and k is a semiring.

For A semiring, the set T_A is a formal power series over X=2 (**Why?**), *i.e.*,

$$T_A = \{ \sigma | \sigma : \mathbf{2}^* \to A \}$$

Formal power series

The set of infinite binary trees $-T_A$ – is the final coalgebra of

$$F(X) = X \times A \times X$$

Recall: A formal power series is a function $\sigma: X^* \to k$ where X is the set of variables (or input symbols) and k is a semiring.

For A semiring, the set T_A is a formal power series over X=2 (**Why?**), *i.e*,

$$T_A = {\sigma | \sigma : 2^* \rightarrow A}$$

- Final coalgebra for $G(X) = A \times X^B$ is A^{B^*}
- $F(X) = X \times A \times X \cong A \times X \times X \cong A \times X^2$
- $2 = \{L, R\}$

- Final coalgebra for $G(X) = A \times X^B$ is A^{B^*}
- $F(X) = X \times A \times X \cong A \times X \times X \cong A \times X^2$
- $2 = \{L, R\}$

Behavioural Differential Equations

The formal definition of $f(\sigma_1, ..., \sigma_n) = \sigma \in T_A$ is now expressed in terms of a *behavioural differential equation*.

$$\sigma(\varepsilon) = c$$
 initial value
 $\sigma_L = left_exp$ left derivative
 $\sigma_R = right_exp$ right derivative

- We know that such system has a unique solution if:
 - ① c is calculated only involving $\sigma_1(\varepsilon), \ldots, \sigma_n(\varepsilon)$
 - 2 left_exp only depends on $\sigma_1, \ldots, \sigma_n, (\sigma_1)_L, \ldots, (\sigma_n)_L$ and constants
 - ③ right_exp only depends on $\sigma_1, \ldots, \sigma_n, (\sigma_1)_R, \ldots, (\sigma_n)_R$ and constants

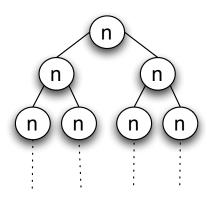
Behavioural Differential Equations

The formal definition of $f(\sigma_1, ..., \sigma_n) = \sigma \in T_A$ is now expressed in terms of a *behavioural differential equation*.

$$\sigma(\varepsilon) = c$$
 initial value
 $\sigma_L = left_exp$ left derivative
 $\sigma_R = right_exp$ right derivative

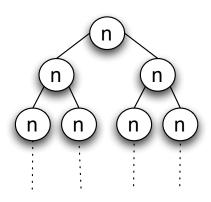
- We know that such system has a unique solution if:
 - **1** c is calculated only involving $\sigma_1(\varepsilon), \ldots, \sigma_n(\varepsilon)$
 - 2 left_exp only depends on $\sigma_1, \ldots, \sigma_n, (\sigma_1)_L, \ldots, (\sigma_n)_L$ and constants
 - **3** right_exp only depends on $\sigma_1, \ldots, \sigma_n, (\sigma_1)_R, \ldots, (\sigma_n)_R$ and constants

Examples I



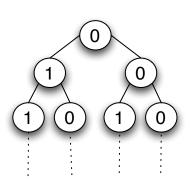
$$\sigma(\varepsilon) = n$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma$

Examples I



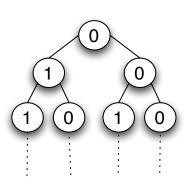
$$\sigma(\varepsilon) = n$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma$

Examples II



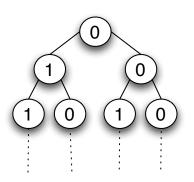
$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

Examples II



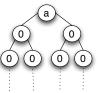
$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

Examples II



$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

[a] denotes



Examples III – The Thue-Morse sequence

- Obtained from the parities of the counts of 1's in the binary representation of non negative integers.
- 0,1,1,0,1,0,0,1, . . .
- Can be obtained by the substitution map $\{0 \rightarrow 01; 1 \rightarrow 10\}$:

$$0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow \dots$$

• Tree representation (at level k, we have 2^k digits)

Examples III – The Thue-Morse sequence

- Obtained from the parities of the counts of 1's in the binary representation of non negative integers.
- 0,1,1,0,1,0,0,1,...
- Can be obtained by the substitution map $\{0 \rightarrow 01; 1 \rightarrow 10\}$:

$$0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow \dots$$

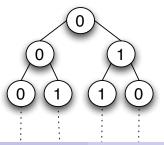
• Tree representation (at level k, we have 2^k digits)

Examples III – The Thue-Morse sequence

- Obtained from the parities of the counts of 1's in the binary representation of non negative integers.
- 0,1,1,0,1,0,0,1,...
- Can be obtained by the substitution map $\{0 \rightarrow 01; 1 \rightarrow 10\}$:

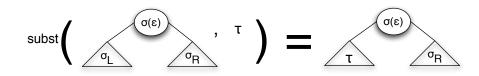
$$0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow \dots$$

Tree representation (at level k, we have 2k digits)



$$\begin{array}{rcl} \sigma(\varepsilon) & = & 0 \\ \sigma_L & = & \sigma \\ \sigma_R & = & \sigma + repeat(1) \end{array}$$

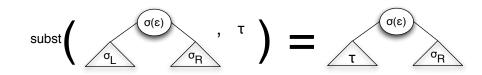
Examples IV – Substitution operation



$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

Examples IV – Substitution operation



$$(\operatorname{subst}(\sigma,\tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma,\tau))_L = \tau$
 $(\operatorname{subst}(\sigma,\tau))_R = \sigma_R$

Operations on trees

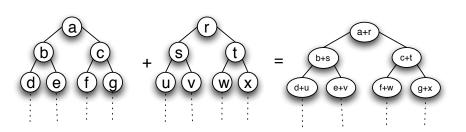
From formal power series we inherit several definitions of operations:

Name	Sum	Product
Initial value	$(\sigma + \tau)(\varepsilon) = \sigma(\varepsilon) + \tau(\varepsilon)$	$(\sigma \times \tau)(\varepsilon) = \sigma(\varepsilon) \times \tau(\varepsilon)$
Left der.	$(\sigma + \tau)_{L} = \sigma_{L} + \tau_{L}$	$(\sigma \times \tau)_{L} = \sigma_{L} \times \tau + \sigma(\varepsilon) \times \tau_{L}$
Right der	$(\sigma + \tau)_R = \sigma_R + \tau_R$	$(\sigma \times \tau)_{R} = \sigma_{R} \times \tau + \sigma(\varepsilon) \times \tau_{R}$

Operations on trees

From formal power series we inherit several definitions of operations:

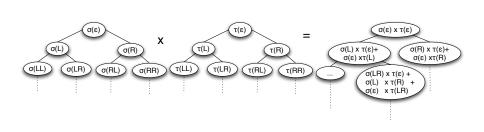
Name	Sum	Product
Initial value	$(\sigma + \tau)(\varepsilon) = \sigma(\varepsilon) + \tau(\varepsilon)$	$(\sigma \times \tau)(\varepsilon) = \sigma(\varepsilon) \times \tau(\varepsilon)$
Left der.	$(\sigma + \tau)_{L} = \sigma_{L} + \tau_{L}$	$(\sigma \times \tau)_{L} = \sigma_{L} \times \tau + \sigma(\varepsilon) \times \tau_{L}$
Right der	$(\sigma + \tau)_R = \sigma_R + \tau_R$	$(\sigma \times \tau)_{R} = \sigma_{R} \times \tau + \sigma(\varepsilon) \times \tau_{R}$



Operations on trees

From formal power series we inherit several definitions of operations:

Name	Sum	Product
Initial value	$(\sigma + \tau)(\varepsilon) = \sigma(\varepsilon) + \tau(\varepsilon)$	$(\sigma \times \tau)(\varepsilon) = \sigma(\varepsilon) \times \tau(\varepsilon)$
Left der.	$(\sigma + \tau)_{L} = \sigma_{L} + \tau_{L}$	$(\sigma \times \tau)_{L} = \sigma_{L} \times \tau + \sigma(\varepsilon) \times \tau_{L}$
Right der	$(\sigma + \tau)_R = \sigma_R + \tau_R$	$(\sigma \times \tau)_{R} = \sigma_{R} \times \tau + \sigma(\varepsilon) \times \tau_{R}$



Fundamental Theorem

For all infinite binary trees $\sigma \in T_A$:

$$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$$

where

$$L(\varepsilon) = 0$$
 $R(\varepsilon) = 0$
 $L_L = [1]$ $R_L = [0]$
 $L_R = [0]$ $R_R = [1]$

Fundamental Theorem

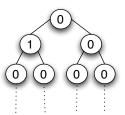
For all infinite binary trees $\sigma \in T_A$:

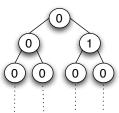
$$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$$

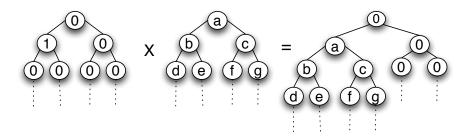
where

$$L(\varepsilon) = 0$$

 $L_L = [1]$
 $L_R = [0]$







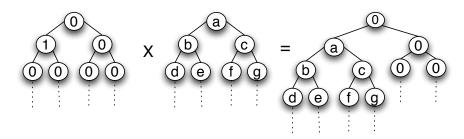
$$(L \times \sigma)(\varepsilon) = L(\varepsilon) \times \sigma(\varepsilon) = 0$$

$$(L \times \sigma)_{L} = L_{L} \times \sigma + [L(\varepsilon)] \times \sigma_{L}$$

$$= [1] \times \sigma + [0] \times \sigma_{L} = \sigma$$

$$(L \times \sigma)_{R} = L_{R} \times \sigma + [L(\varepsilon)] \times \sigma_{R}$$

$$= [0] \times \sigma + [0] \times \sigma_{R} = [0]$$



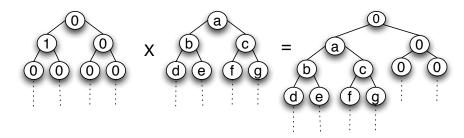
$$(L \times \sigma)(\varepsilon) = L(\varepsilon) \times \sigma(\varepsilon) = 0$$

$$(L \times \sigma)_{L} = L_{L} \times \sigma + [L(\varepsilon)] \times \sigma_{L}$$

$$= [1] \times \sigma + [0] \times \sigma_{L} = \sigma$$

$$(L \times \sigma)_{R} = L_{R} \times \sigma + [L(\varepsilon)] \times \sigma_{R}$$

$$= [0] \times \sigma + [0] \times \sigma_{R} = [0]$$



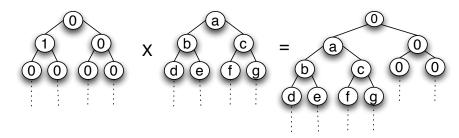
$$(L \times \sigma)(\varepsilon) = L(\varepsilon) \times \sigma(\varepsilon) = 0$$

$$(L \times \sigma)_{L} = L_{L} \times \sigma + [L(\varepsilon)] \times \sigma_{L}$$

$$= [1] \times \sigma + [0] \times \sigma_{L} = \sigma$$

$$(L \times \sigma)_{R} = L_{R} \times \sigma + [L(\varepsilon)] \times \sigma_{R}$$

$$= [0] \times \sigma + [0] \times \sigma_{R} = [0]$$



$$(L \times \sigma)(\varepsilon) = L(\varepsilon) \times \sigma(\varepsilon) = 0$$

$$(L \times \sigma)_{L} = L_{L} \times \sigma + [L(\varepsilon)] \times \sigma_{L}$$

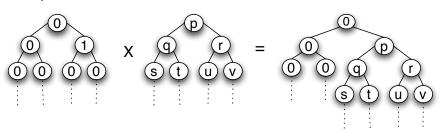
$$= [1] \times \sigma + [0] \times \sigma_{L} = \sigma$$

$$(L \times \sigma)_{R} = L_{R} \times \sigma + [L(\varepsilon)] \times \sigma_{R}$$

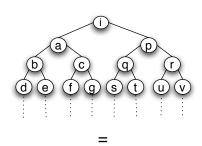
$$= [0] \times \sigma + [0] \times \sigma_{R} = [0]$$

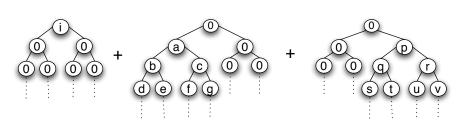
$$R \times \sigma_R$$

Similarly:

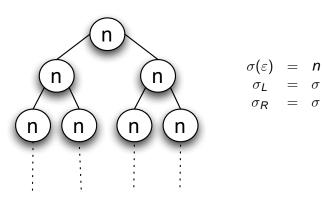


$$\sigma = \sigma(\varepsilon) + L \times \sigma_L + R \times \sigma_R$$





But... What can we do with this theorem?

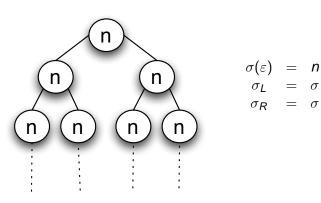


Closed Formula

$$\sigma = [n] + L \times \sigma + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = [n]$$

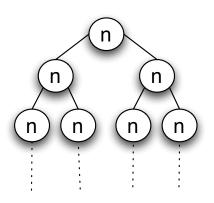
$$\Leftrightarrow \sigma = \frac{n}{4 + n} \sigma$$



Closed Formula I

$$\sigma = [n] + L \times \sigma + R \times \sigma$$

$$\Rightarrow (1 - L - R)\sigma = [n]$$

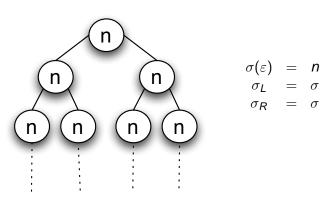


$$\begin{array}{rcl}
\sigma(\varepsilon) & = & n \\
\sigma_L & = & \sigma \\
\sigma_R & = & \sigma
\end{array}$$

Closed Formula I

$$\sigma = [n] + L \times \sigma + R \times \sigma$$

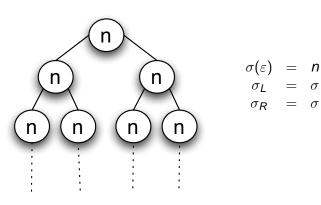
$$\Leftrightarrow (1 - L - R)\sigma = [n]$$



Closed Formula I

$$\sigma = [n] + L \times \sigma + R \times \sigma$$

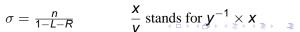
$$\Leftrightarrow (1 - L - R)\sigma = [n]$$



$$\sigma = [n] + L \times \sigma + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = [n]$$

$$\Leftrightarrow \sigma = \frac{n}{1 - L - R}$$



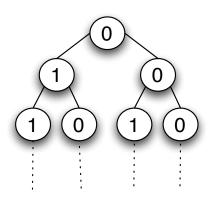
Inverse operation

The inverse of a tree – σ^{-1} – is defined formally so that $\sigma \times \sigma^{-1} = 1$.

$$\sigma^{-1}(\varepsilon) = (\sigma(\varepsilon))^{-1}$$

$$(\sigma^{-1})_L = (\sigma(\varepsilon))^{-1} \times \sigma_L \times \sigma^{-1}$$

$$(\sigma^{-1})_R = (\sigma(\varepsilon))^{-1} \times \sigma_R \times \sigma^{-1}$$

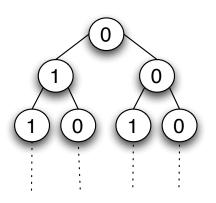


$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

$$\sigma = 0 + L \times (\sigma + 1) + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = L$$

$$\Leftrightarrow \sigma = \frac{L}{1 + R}$$

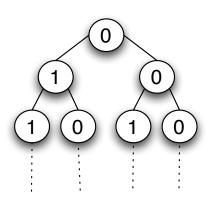


$$\sigma(\varepsilon) = 0$$
 $\sigma_L = \sigma + [1]$
 $\sigma_R = \sigma$

$$\sigma = 0 + L \times (\sigma + 1) + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = L$$

$$\Leftrightarrow \sigma = \frac{L}{1 - L - R}$$

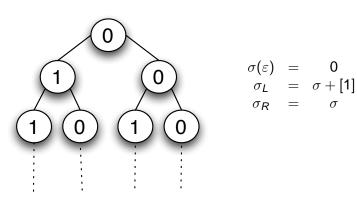


$$\begin{array}{rcl}
\sigma(\varepsilon) & = & 0 \\
\sigma_L & = & \sigma + [1] \\
\sigma_R & = & \sigma
\end{array}$$

$$\sigma = 0 + L \times (\sigma + 1) + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = L$$

$$\Leftrightarrow \sigma = \frac{L}{\sigma}$$

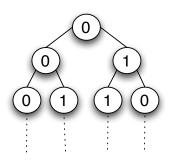


$$\sigma = 0 + L \times (\sigma + 1) + R \times \sigma$$

$$\Leftrightarrow (1 - L - R)\sigma = L$$

$$\Leftrightarrow \sigma = \frac{L}{1 - L - R}$$

Examples revisited III – The Thue-Morse sequence



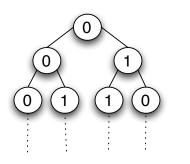
$$\sigma(\varepsilon) = 0$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma + repeat(1)$

$$\sigma = 0 + L \times \sigma + R \times (\sigma + repeat(1))$$

$$\Leftrightarrow (1 - L - R)\sigma = R \times \frac{1}{1 - L - R}$$

$$\Leftrightarrow \sigma = \frac{1}{1 - L - R} \times R \times \frac{1}{(1 - L - R)}$$

Examples revisited III – The Thue-Morse sequence



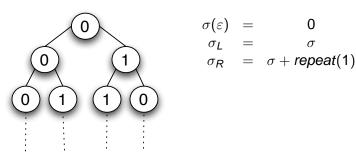
$$\sigma(\varepsilon) = 0$$
 $\sigma_L = \sigma$
 $\sigma_R = \sigma + repeat(1)$

$$\sigma = 0 + L \times \sigma + R \times (\sigma + repeat(1))$$

$$\Leftrightarrow (1 - L - R)\sigma = R \times \frac{1}{1 - L - R}$$

$$\Leftrightarrow \sigma = \frac{1}{1 - L - R} \times R \times \frac{1}{(1 - L - R)}$$

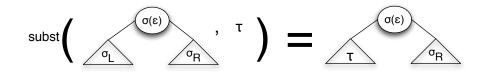
Examples revisited III – The Thue-Morse sequence



$$\sigma = 0 + L \times \sigma + R \times (\sigma + repeat(1))$$

$$\Leftrightarrow (1 - L - R)\sigma = R \times \frac{1}{1 - L - R}$$

$$\Leftrightarrow \sigma = \frac{1}{1 - L - R} \times R \times \frac{1}{(1 - L - R)}$$



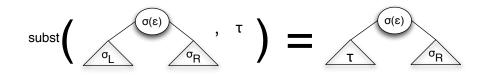
$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

$$subst(\sigma,\tau) = \sigma(\varepsilon) + L \times \tau + R \times \sigma_{R}$$

$$\Leftrightarrow \qquad \{ \sigma - L \times \sigma_{L} = \sigma(\varepsilon) + R \times \sigma_{R} \}$$

$$subst(\sigma,\tau) = \sigma - L \times (\sigma_{L} - \tau)$$



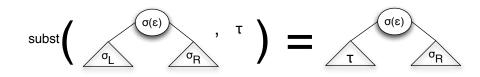
$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

$$subst(\sigma,\tau) = \sigma(\varepsilon) + L \times \tau + R \times \sigma_{R}$$

$$\Leftrightarrow \qquad \{ \sigma - L \times \sigma_{L} = \sigma(\varepsilon) + R \times \sigma_{R} \}$$

$$subst(\sigma,\tau) = \sigma - L \times (\sigma_{L} - \tau)$$



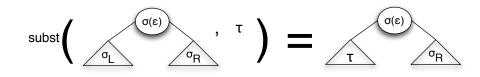
$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

$$subst(\sigma,\tau) = \sigma(\varepsilon) + L \times \tau + R \times \sigma_{R}$$

$$\Leftrightarrow \quad \{ \sigma - L \times \sigma_{L} = \sigma(\varepsilon) + R \times \sigma_{R} \}$$

$$subst(\sigma,\tau) = \sigma - L \times (\sigma_{L} - \tau)$$



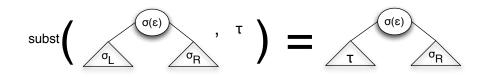
$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

$$subst(\sigma,\tau) = \sigma(\varepsilon) + L \times \tau + R \times \sigma_{R}$$

$$\Leftrightarrow \qquad \{ \sigma - L \times \sigma_{L} = \sigma(\varepsilon) + R \times \sigma_{R} \}$$

$$subst(\sigma,\tau) = \sigma - L \times (\sigma_{L} - \tau)$$



$$(\operatorname{subst}(\sigma, \tau))(\varepsilon) = \sigma(\varepsilon)$$

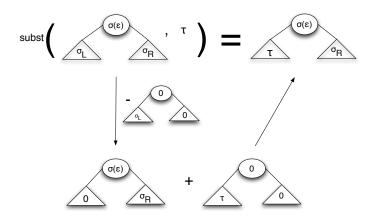
 $(\operatorname{subst}(\sigma, \tau))_L = \tau$
 $(\operatorname{subst}(\sigma, \tau))_R = \sigma_R$

$$subst(\sigma,\tau) = \sigma(\varepsilon) + L \times \tau + R \times \sigma_{R}$$

$$\Leftrightarrow \qquad \{ \sigma - L \times \sigma_{L} = \sigma(\varepsilon) + R \times \sigma_{R} \}$$

$$subst(\sigma,\tau) = \sigma - L \times (\sigma_{L} - \tau)$$

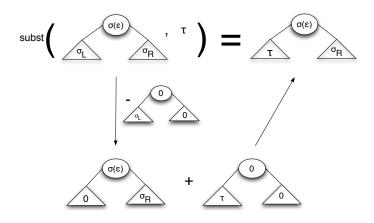
$subst(\sigma, \tau) = \sigma - L \times (\sigma_L - \tau)$



Easily generalizes:

 $subst(\sigma, \tau, Path) = \sigma - Path(\sigma_{Path} - \tau)$

$subst(\sigma, \tau) = \sigma - L \times (\sigma_L - \tau)$



Easily generalizes:

 $subst(\sigma, \tau, Path) = \sigma - Path(\sigma_{Path} - \tau)$

Conclusions

- Behavioural differential equations are effective to represent infinite binary trees.
- Closed expressions constitute a compact representation of trees (only involving constants) and...
- Give a recipe to implement algorithms.

Future work

- Behavioural differential equations are closely related to lazy functional programming implementations.
- In particular, we would like to study the relation between closed expressions and elimination of corecursion
- We would also like to understand better the class of rational trees