Algebraic Enriched Coalgebras

Filippo Bonchi⁴ Marcello Bonsangue^{1,2} Jan Rutten^{1,3} Alexandra Silva¹

¹Centrum Wiskunde en Informatica
²LIACS - Leiden University
³Radboud Universiteit Nijmegen
⁴INRIA Saclay - LIX, École Polytechnique

Coalgebra Day, March 2010

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.
 J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). CONCUR'98

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.
 - J.J.M.M. Rutten. **Automata and coinduction (an exercise in coalgebra).** CONCUR'98

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.
 - J.J.M.M. Rutten. **Automata and coinduction (an exercise in coalgebra).** CONCUR'98

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.

- Coalgebras are a suitable framework to study the behaviour of dynamical systems.
- Much of the coalgebraic approach can be nicely illustrated with deterministic automata.

 $[\![q]\!] \neq [\![q']\!]$ (different branching structure)

 $[\![\,q\,]\!]\neq [\![\,q'\,]\!] \text{ (different branching structure) but: } L_q=L_{q'}=\{ab,ac\}$

 $[\![q]\!] \neq [\![q']\!]$ (different branching structure) but: $L_q = L_{q'} = \{ab, ac\}$ How do we study NDA wrt language equivalence?

 $\llbracket \, q \, \rrbracket \neq \llbracket \, q' \, \rrbracket$ (different branching structure) but: $L_q = L_{q'} = \{ab, ac\}$ How do we study NDA wrt language equivalence?

Turn a non deterministic automaton into a deterministic one via the powerset construction and then apply usual semantics.

3/12

$$\overline{o}(Q) = egin{cases} 1 & \exists_{q \in Q} o(q) = 1 \ 0 & ext{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

$$\overline{o}(Q) = egin{cases} 1 & \exists_{q \in Q} o(q) = 1 \ 0 & ext{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

$$\overline{o}(Q) = egin{cases} 1 & \exists_{q \in Q} o(q) = 1 \ 0 & ext{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

How do we study NDA wrt language equivalence?

$$L_s = \llbracket \{s\} \rrbracket$$

 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

$$\llbracket \, q \, \rrbracket = \langle \mathit{c}^*\mathit{ab}^*, \mathit{b} + \mathit{c}^* + \mathit{c}^*\mathit{ab}^* \rangle \neq \langle \mathit{c}^*\mathit{ab}^*, \mathit{c}^* + \mathit{c}^*\mathit{ab}^* \rangle = \llbracket \, \mathit{q}' \, \rrbracket$$

 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

How do we study PA wrt (accepted) language equivalence?

 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

How do we study PA wrt (accepted) language equivalence?

Turn a partial automaton into a total deterministic one by adding a sink state and then apply usual semantics.

$$\begin{cases} \overline{o}(*) = 0 & \qquad \begin{cases} \overline{t}(*)(a) = * \\ \overline{o}(s) = o(s) & \end{cases} \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$$

$$\begin{cases} \overline{o}(*) = 0 & \qquad \begin{cases} \overline{t}(*)(a) = * \\ \overline{o}(s) = o(s) & \end{cases} \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$$

$$\begin{cases} \overline{o}(*) = 0 \\ \overline{o}(s) = o(s) \end{cases} \begin{cases} \overline{t}(*)(a) = * \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$$

How do we study PA wrt language equivalence?

$$L_s = \llbracket i(s) \rrbracket$$

How do we capture both examples (and more) in the same framework?

How do we capture both examples (and more) in the same framework?

The state space was *enriched*: T monad (P, 1+, ...).

How do we capture both examples (and more) in the same framework?

The state space was *enriched*: T monad (\mathcal{P} , 1+, ...). Transform an FT-coalgebra (X,f) into an F-coalgebra (X).

How do we capture both examples (and more) in the same framework?

The state space was *enriched*: T monad $(\mathcal{P}, 1+, \ldots)$. Transform an FT-coalgebra (X,f) into an F-coalgebra $(T(X), f^{\sharp})$. If F has final coalgebra: $x_1 \approx_F^T x_2 \Leftrightarrow \llbracket \eta_X(x_1) \rrbracket = \llbracket \eta_X(x_2) \rrbracket$.

In a nutshell...

Ingredients:

- A monad *T*;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f;

In a nutshell...

Ingredients:

- A monad T;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f; We can require FT(X) to be a T-algebra: $(FT(X), h: T(FT(X)) \to FT(X))$

$$f^{\sharp} \colon T(X) \xrightarrow{T(f)} T(F(T(X))) \xrightarrow{h} F(T(X))$$

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;

PA
$$F(X) = 2 \times X^A$$
, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.

What is the relation between \approx_F^T and \sim_F ?

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.

What is the relation between \approx_F^T and \sim_F ?

Bisimilarity implies linear bisimilarity

Theorem

$$\sim_{F} \Rightarrow \approx_{F}^{T}$$

Bisimilarity implies linear bisimilarity

Theorem

$$\sim_{F} \Rightarrow \approx_{F}^{T}$$

The above theorem instantiates to well known facts:

- for NDA ($F(X) = 2 \times X^A$, T = P) that bisimilarity implies language equivalence;
- for PA $(F(X) = 2 \times X^A, T = 1 + -)$ that equivalences of pair of languages, consisting of defined paths and accepted words, implies equivalence of accepted words;
- for probabilistic automata ($F(X) = [0,1] \times X^A$, $T = \mathcal{D}_{\omega}$) that probabilistic bisimilarity implies weighted language equivalence.

Examples, Examples, ...

- Partial Mealy machines $S \rightarrow (B \times (1+S))^A$;
- Automata with exceptions $S \rightarrow 2 \times (E+S)^A$;
- Automata with side effects $S \to E^E \times ((E \times S)^E)^A$;
- Total subsequential transducers $S \rightarrow O^* \times (O^* \times S)^A$;
- Probabilistic automata $S \to [0, 1] \times (\mathcal{D}_{\omega}(X))^A$;
- Weighted automata $S \to \mathbb{R} \times (\mathbb{R}^{X}_{\omega})^{A}$;
- ...

Conclusions

- Lifted powerset construction to the more general framework of FT-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of linear equivalences for many types of automata.

Thanks!!

Conclusions

- Lifted powerset construction to the more general framework of FT-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of linear equivalences for many types of automata.

Thanks!!