Initial Algebras of Terms, with binding and algebraic structure

Alexandra Silva and Bart Jacobs

COIN, March 2013

$$t$$
: = $x \mid (t \mid t) \mid \lambda x.t$ P : = $0 \mid P + P \mid a.P \mid x \mid \mu x.P$

Terms and formulas

$$t$$
: = $x \mid (t \mid t) \mid \lambda x.t$ P : = $0 \mid P + P \mid a.P \mid x \mid \mu x.P$

- Terms and formulas
- Unifying perspective on syntax (and semantics).

$$t$$
: = $x \mid (t \mid t) \mid \lambda x.t$ P : = $0 \mid P + P \mid a.P \mid x \mid \mu x.P$

- Terms and formulas
- Unifying perspective on syntax (and semantics).
- Syntax = Algebra Semantics = Coalgebra

2/26

Motivation

$$t = x \mid (t \mid t) \mid \lambda x.t$$
 $P = 0 \mid P + P \mid a.P \mid x \mid \mu x.P$

- Terms and formulas
- Unifying perspective on syntax (and semantics).
- Syntax = Algebra Semantics = Coalgebra
- Combination = ultimate goal

$$t = x \mid (t \mid t) \mid \lambda x.t$$
 $P = 0 \mid P + P \mid a.P \mid x \mid \mu x.P$

- Terms and formulas
- Unifying perspective on syntax (and semantics).
- Syntax = Algebra Semantics = Coalgebra
- Combination = ultimate goal

This talk: Algebra

$$t = x \mid (t \mid t) \mid \lambda x.t$$
 $P = 0 \mid P + P \mid a.P \mid x \mid \mu x.P$

Many calculi have binding operators.

$$t = x \mid (t \mid t) \mid \lambda x.t$$
 $P = 0 \mid P + P \mid a.P \mid x \mid \mu x.P$

- Many calculi have binding operators.
- Challenge: how to keep track of variables in a modular uniform way?

$$t$$
: = $x \mid (t \mid t) \mid \lambda x.t$ P : = $0 \mid P+P \mid a.P \mid x \mid \mu x.P$

- Many calculi have algebraic operators.
- Challenge: how to derive syntax where this algebraic operators arise for free.

Alexandra & Bart COIN Initial Algebras of Terms 4 / 26

$$t$$
: = $x \mid (t \mid t) \mid \lambda x.t$ P : = $0 \mid P+P \mid a.P \mid x \mid \mu x.P$

- Many calculi have algebraic operators.
- Challenge: how to derive syntax where this algebraic operators arise for free.

This talk: How to combine both!

History and inspiration: binding

$$t = x \mid (t \mid t) \mid \lambda x \cdot t$$
 $P = 0 \mid P + P \mid a \cdot P \mid x \mid \mu x \cdot P$

- Expressions with variable binding can be described via initiality in presheaf categories.
- Initial algebra semantics: modern perspective on expressions.
- Denotational semantics of expressions is provided by the initial algebra map.
- By construction "compositional".

History and inspiration: expressions w/ algebraic ops

$$P: = 0 | P+P | a.P | x | \mu x.P \quad P: = 0 | P+P | s \cdot P | a. \sum_{i} P_{i} | \cdots$$

non-deterministic = **JSL**

weighted = **Vect** (
$$s \in \mathbb{F}$$
)

Expressions given and Kleene theorem proved.

Alexandra & Bart COIN Initial Algebras of Terms 6 / 26

History and inspiration: expressions w/ algebraic ops

$$P: = 0 | P+P | a.P | x | \mu x.P \quad P: = 0 | P+P | s \cdot P | a. \sum_{i} P_{i} | \cdots$$

non-deterministic = JSL

weighted = **Vect** (
$$s \in \mathbb{F}$$
)

- Expressions given and Kleene theorem proved.
- vs. expressions derived (as initial algebra) and Kleene theorem (almost) for free.

Alexandra & Bart COIN Initial Algebras of Terms 6 / 26

This talk

 We want expressions with a binding operator and algebraic operations.

Alexandra & Bart COIN Initial Algebras of Terms 7 / 26

This talk

- We want expressions with a binding operator and algebraic operations.
- Fiore/Plotkin/Turi used set-valued presheaves $\mathbb{N} \to \mathbf{Sets}$.
- We use algebra-valued presheaves N → EM(T).
- We derive expressions as initial algebras.
- Examples with $\mathcal{EM}(\mathcal{P}_{fin}) = \mathbf{JSL}$ and $\mathcal{EM}(\mathcal{M}_{S}) = \mathbf{SMod}$.
- Algebraic effects: non-determinism and resource-sensitivity.

$$((x y) y)[t/x] \mapsto ((t y) y)$$

$$((x y) y)[t/x] \mapsto ((t y) y)$$

$$((x y) y)[t/y] \mapsto ((x t) t)$$

$$((x y) y)[t/x] \quad \mapsto \quad ((t y) y)$$

$$((x y) y)[t/y] \mapsto ((x t) t)$$

- what is the type of substitution?
- -[-/-]: Term × Term × Var \rightarrow Term

$$((x y) y)[t/x] \quad \mapsto \quad ((t y) y)$$

$$((x y) y)[t/y] \mapsto ((x t) t)$$

- what is the type of substitution?
- -[-/-]: Term × Term × Var \rightarrow Term
- -[-/-]: Term \times !Term \times Var \rightarrow Term
- Need to explicitly model replication!

Setup:

• Categories of the form $\mathbf{A}^{\mathbb{N}}$ (actually, $\mathcal{E}\mathcal{M}(T)^{\mathbb{N}}$)

Setup:

• Categories of the form $\mathbf{A}^{\mathbb{N}}$ (actually, $\mathcal{E}\mathcal{M}(T)^{\mathbb{N}}$)

Intuition: the exponent in $\mathbf{A}^{\mathbb{N}}$ allows to model the number of free variables.

Alexandra & Bart COIN Initial Algebras of Terms 9 / 26

Setup:

- Categories of the form $\mathbf{A}^{\mathbb{N}}$ (actually, $\mathcal{E}\mathcal{M}(T)^{\mathbb{N}}$)
 - Intuition: the exponent in $\mathbf{A}^{\mathbb{N}}$ allows to model the number of free variables.
- We have the free functor $\mathcal{F} \colon \mathbf{Sets} \to \mathcal{EM}(T)$;
- The free algebra adjunction $\mathcal{F} \dashv \mathcal{U}$ induces a comonad $\mathcal{FU} \colon \mathcal{EM}(T) \to \mathcal{EM}(T)$ that we write as !.
- ! is relevant in e.g. linear logic.

Setup (c'd):

 Weakening monad W: context extension, number of free variables changes

Alexandra & Bart COIN Initial Algebras of Terms 10 / 26

Setup (c'd):

 Weakening monad W: context extension, number of free variables changes

Lemma

We define a monad $W = \mathbf{A}^{(-)+1} : \mathbf{A}^{\mathbb{N}} \to \mathbf{A}^{\mathbb{N}}$, so that:

$$W(P)(n) = P(n+1)$$
 $W(P)(f) = P(f+id_1)$

The unit up: id $\Rightarrow W$ and multiplication ctt: $W^2 \Rightarrow W$:

$$P(n) \xrightarrow{\operatorname{up}_{P,n}=P(\kappa_1)} P(n+1) \xleftarrow{\operatorname{ctt}_{P,n}=P([\operatorname{id},\kappa_2])} P(n+2).$$

Alexandra & Bart COIN Initial Algebras of Terms 10 / 26

Setup (c'd):

 Weakening monad W: context extension, number of free variables changes

Lemma

We define a monad $W = \mathbf{A}^{(-)+1} : \mathbf{A}^{\mathbb{N}} \to \mathbf{A}^{\mathbb{N}}$, so that:

$$W(P)(n) = P(n+1)$$
 $W(P)(f) = P(f+id_1)$

The unit up: id $\Rightarrow W$ and multiplication ctt: $W^2 \Rightarrow W$:

$$P(n) \xrightarrow{\sup_{P,n} = P(\kappa_1)} P(n+1) \xleftarrow{\operatorname{ctt}_{P,n} = P([\operatorname{id}, \kappa_2])} P(n+2).$$

up: add a fresh variable; ctt: remove the last variable

Setup (c'd):

• Weakening monad \mathcal{W} : context extension, number of free variables changes

Setup (c'd):

• Weakening monad \mathcal{W} : context extension, number of free variables changes

Intuition/usage: a binding operator b, like λ or μ , has type

$$b \colon \mathcal{W}(P) \to P$$

en 🖤

Technical intermezzo: Substitution for algebra-valued presheaves.

Goal: to define

sbs:
$$WT(\mathcal{F}) \otimes !T(\mathcal{F}) \rightarrow T(\mathcal{F})$$

Technical intermezzo: Substitution for algebra-valued presheaves.

Goal: to define

sbs:
$$WT(\mathfrak{F}) \otimes !T(\mathfrak{F}) \rightarrow T(\mathfrak{F})$$

How? By induction with parameters (next slide).

Technical intermezzo: Substitution for algebra-valued presheaves.

Goal: to define

sbs:
$$WT(\mathfrak{F}) \otimes !T(\mathfrak{F}) \rightarrow T(\mathfrak{F})$$

How? By induction with parameters (next slide).

One may read $\operatorname{sbs}_n(s \otimes U) = s[U/v_{n+1}]$ where U is of !-type. The type $\mathcal{W}T(\mathcal{F}) \otimes !T(\mathcal{F}) \to T(\mathcal{F})$ is rich:

- First argument WT(F): term s in an augmented context (variable v_{n+1} to be substituted)
- The second argument U of replication type $!T(\mathfrak{F})$ is going to be substituted for the variable v_{n+1} .
- Number of times U needs to be used in substitution taken into account (main diff. with Fiore/Plotkin/Turi).

Alexandra & Bart COIN Initial Algebras of Terms 12 / 26

Induction with parameters

 $H \colon \mathcal{EM}(T) \to \mathcal{EM}(T)$ endofunctor on $\mathcal{EM}(T)$ of a commutative monad T on **Sets**. If H has an initial algebra $a \colon H(A) \stackrel{\cong}{\to} A$ then:

$$H(A) \otimes !B \xrightarrow{\mathrm{id} \otimes \Delta} H(A) \otimes !B \otimes !B \xrightarrow{\mathrm{st} \otimes \mathrm{id}} H(A \otimes !B) \otimes !B \xrightarrow{H(h) \otimes \mathrm{id}} H(C) \otimes !B$$

$$a \otimes \mathrm{id} \downarrow \cong \qquad \qquad \downarrow c$$

$$A \otimes !B \xrightarrow{\qquad \qquad h}$$

Alexandra & Bart COIN Initial Algebras of Terms 13 / 26

Induction with parameters

 $H \colon \mathcal{E}\mathcal{M}(T) \to \mathcal{E}\mathcal{M}(T)$ endofunctor on $\mathcal{E}\mathcal{M}(T)$ of a commutative monad T on **Sets**. If H has an initial algebra $a \colon H(A) \stackrel{\cong}{\to} A$ then:

$$H(A) \otimes !B \xrightarrow{\operatorname{id} \otimes \Delta} H(A) \otimes !B \otimes !B \xrightarrow{\operatorname{st} \otimes \operatorname{id}} H(A \otimes !B) \otimes !B \xrightarrow{H(h) \otimes \operatorname{id}} H(C) \otimes !B$$

$$A \otimes !B \xrightarrow{h} C$$

Our goal was: sbs: $WT(\mathcal{F}) \otimes !T(\mathcal{F}) \to T(\mathcal{F})$. Missing: the st map and $WT(\mathcal{F})$ as initial algebra.

The st map

Proposition

Let T be a commutative monad on **Sets**, and $H \colon \mathcal{EM}(T) \to \mathcal{EM}(T)$ be an arbitrary functor. For algebras A, B there is a "non-linear" strength map:

$$H(A) \otimes !B \xrightarrow{\operatorname{st}} H(A \otimes !B).$$
 (1)

Alexandra & Bart COIN Initial Algebras of Terms 14 / 26

$WT(\mathfrak{F})$ as initial algebra

- $WT(\mathfrak{F})$ is the free H-algebra on $W(\mathfrak{F})$ (technical lemma);
- Hence, if we have an isomorphism φ: HW ⇒ WH, it is an initial algebra of the functor
 W(𝒯) + H(-): ℰℳ(T)^N → ℰℳ(T)^N, via:

$$\mathcal{W}(\mathcal{F}) + H(\mathcal{W}T(\mathcal{F})) \xrightarrow{\mathrm{id} + \phi} \mathcal{W}(\mathcal{F}) + \mathcal{W}H(T(\mathcal{F})) = \mathcal{W}(\mathcal{F} + H(T(\mathcal{F})))$$

$$\cong \bigvee_{\mathcal{W}T(\mathcal{F})} \mathcal{W}([\eta_{\mathcal{F}}, \theta_{\mathcal{F}}])$$

$$\mathcal{W}T(\mathcal{F}).$$

• This is enough to define sbs: $WT(\mathcal{F}) \otimes !T(\mathcal{F}) \to T(\mathcal{F})$ by induction with parameters.

Alexandra & Bart COIN Initial Algebras of Terms 15 / 26

Non-deterministic lambda calculus

 $\Lambda \in \textbf{JSL}^{\mathbb{N}}$ initial algebra of

$$P \mapsto \mathfrak{F} + \mathcal{W}(P) + (P \otimes !P),$$

$$\mathfrak{F}(n) = \mathfrak{P}_{fin}(n)$$
 and $!P(n) = \mathfrak{P}_{fin}(P(n))$.

Non-deterministic lambda calculus

 $\Lambda \in \mathbf{JSL}^{\mathbb{N}}$ initial algebra of

$$P \mapsto \mathcal{F} + \mathcal{W}(P) + (P \otimes !P),$$

$$\mathfrak{F}(n) = \mathfrak{P}_{fin}(n)$$
 and $!P(n) = \mathfrak{P}_{fin}(P(n))$.

Described by:

$$\mathcal{F} + \mathcal{W}(\Lambda) + (\Lambda \otimes !\Lambda) \xrightarrow{[\text{var,lam,app}]} \Lambda$$



Non-deterministic lambda calculus

Elements of the set of terms $\Lambda(n) \in \mathbf{JSL}$ with variables from $\{v_1, \dots, v_n\}$ are inductively given by:

- $var_n(V)$, where $V \subseteq n = \{v_1, v_2, ..., v_n\}$;
- $lam_n(N) = \lambda v_{n+1}$. N, where $N \in \Lambda(n+1)$;
- $app(M, \{N_1, ..., N_k\}) = M \cdot \{N_1, ..., N_k\}$, where $M, N_1, ..., N_k \in \Lambda(n)$;
- $\bot \in \Lambda(n)$, and $M \lor N \in \Lambda(n)$, for $M, N \in \Lambda(n)$.

1

Non-deterministic lambda calculus

Elements of the set of terms $\Lambda(n) \in \mathbf{JSL}$ with variables from $\{v_1, \dots, v_n\}$ are inductively given by:

- $var_n(V)$, where $V \subseteq n = \{v_1, v_2, ..., v_n\}$;
- $lam_n(N) = \lambda v_{n+1}$. N, where $N \in \Lambda(n+1)$;
- $app(M, \{N_1, ..., N_k\}) = M \cdot \{N_1, ..., N_k\}$, where $M, N_1, ..., N_k \in \Lambda(n)$;
- $\bot \in \Lambda(n)$, and $M \lor N \in \Lambda(n)$, for $M, N \in \Lambda(n)$.

Non-standard features

Sets of variables in var_n and second arg of application. Using linearity of the operations these can given in terms of single variables.

Alexandra & Bart COIN Initial Algebras of Terms 17 / 26

Equations

(
$$\beta$$
)-rule: ($\lambda x. M$) $N = M[N/x]$

$$\mathcal{W}(\Lambda) \otimes !\Lambda \xrightarrow{\text{lam} \otimes \text{id}} \Lambda \otimes !\Lambda$$

$$\downarrow \text{app}$$

$$\uparrow \text{A}$$

Weighted lambda calculus

Initial algebra of the same functor.

 $\Lambda_{\textit{w}} \in \textbf{SMod}^{\mathbb{N}}$ initial algebra of

$$P \longmapsto \mathfrak{F} + \mathcal{W}(P) + (P \otimes !P),$$

with
$$\mathfrak{F}(n) = \mathfrak{M}(n)$$
 and $P(n) = \mathfrak{M}(P(n))$.

Weighted lambda calculus

Initial algebra of the same functor.

 $\Lambda_{\textit{w}} \in \textbf{SMod}^{\mathbb{N}}$ initial algebra of

$$P \longmapsto \mathfrak{F} + \mathcal{W}(P) + (P \otimes !P),$$

with $\mathfrak{F}(n) = \mathfrak{M}(n)$ and $P(n) = \mathfrak{M}(P(n))$.

Non-standard features

Variables and second argument of application are linear combinations of terms.

Non-deterministic automata

The presheaf of expressions $E \in \mathbf{JSL}^{\mathbb{N}}$ is the initial algebra of the functor on $\mathbf{JSL}^{\mathbb{N}}$ given by:

$$P \mapsto \mathcal{F} + \mathcal{W}(P) + 2 + A \cdot !P$$

where
$$2 = \{\bot, \top\}$$
, $\mathfrak{F}(n) = \mathfrak{P}_{\text{fin}}(\{v_1, \ldots, v_n\})$, and $P = \mathfrak{P}_{\text{fin}}(P)$.

Alexandra & Bart COIN Initial Algebras of Terms 20 / 26

Non-deterministic automata

The presheaf of expressions $E \in \mathbf{JSL}^{\mathbb{N}}$ is the initial algebra of the functor on $\mathbf{JSL}^{\mathbb{N}}$ given by:

$$P \mapsto \mathcal{F} + \mathcal{W}(P) + 2 + A \cdot !P$$

where
$$2 = \{\bot, \top\}$$
, $\mathfrak{F}(n) = \mathfrak{P}_{\mathrm{fin}}(\{v_1, \ldots, v_n\})$, and $!P = \mathfrak{P}_{\mathrm{fin}}(P)$.

We can describe E as

$$\mathfrak{F} + \mathcal{W}(\mathsf{E}) + 2 + \textit{A} \cdot !\mathsf{E} \xrightarrow{[\text{var}, \text{fix}, \text{ops}, \text{pre}]} \mathsf{E}$$

Alexandra & Bart COIN Initial Algebras of Terms 20 / 26

Non-deterministic automata

The presheaf of expressions $E \in \mathbf{JSL}^{\mathbb{N}}$ is the initial algebra of the functor on $\mathbf{JSL}^{\mathbb{N}}$ given by:

$$P \mapsto \mathcal{F} + \mathcal{W}(P) + 2 + A \cdot !P$$

where
$$2 = \{\bot, \top\}$$
, $\mathfrak{F}(n) = \mathfrak{P}_{\mathrm{fin}}(\{v_1, \ldots, v_n\})$, and $!P = \mathfrak{P}_{\mathrm{fin}}(P)$.

We can describe E as

$$\mathcal{F} + \mathcal{W}(\mathsf{E}) + 2 + \textbf{\textit{A}} \cdot ! \, \mathsf{E} \xrightarrow{[var, fix, ops, pre]} \mathsf{E}$$

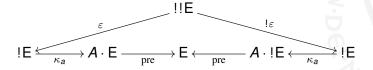
- $\mu v_{n+1}.e = fix_n(e);$
- $0 = ops(\bot)$ $1 = ops(\top);$
- $a(\{e_1, \ldots e_k\}) = \operatorname{pre}(\kappa_a(\{e_1, \ldots e_k\}))$
- \perp and $e \lor e'$ for any $e, e' \in E(n)$.

Examples

$$e_1 = b(1)$$
 $e_2 = \mu x.a(\{x\}) \lor 1$
 $e_1 \xrightarrow{b} 1$
 $e_2 = \mu x.a(\{x\}) \lor 1$
 $e_3 = a(\{e_1, e_2\})$
 $e_4 = \mu x.1 \lor a(b(x))$
 $e_3 \xrightarrow{a} e_2$
 $e_4 = \mu x.1 \lor a(b(x))$

Equations

$$a(\{e \lor e'\}) = a(\{e\}) \lor a(\{e'\}).$$



(2)

Weighted automata

Initial algebra E of the functor on **SMod**^{\mathbb{N}}:

$$P \longmapsto \mathfrak{F} + \mathcal{W}(P) + S + A \cdot !P,$$

where
$$\mathfrak{F}(n) = \mathfrak{M}(\{v_1, \dots, v_n\})$$
 and $P = \mathfrak{M}(P)$.

23 / 26

Weighted automata

Initial algebra E of the functor on **SMod**^{\mathbb{N}}:

$$P \mapsto \mathcal{F} + \mathcal{W}(P) + S + A \cdot !P$$

where $\mathfrak{F}(n) = \mathfrak{M}(\{v_1, \dots, v_n\})$ and $P = \mathfrak{M}(P)$.

- $\underline{s} = \text{val}(s)$, for any $s \in S$;
- $a(\sum_{i} s_i e_i) = \operatorname{pre}(\kappa_a(\sum_{i} s_i e_i));$
- 0, s e, and e + e' for any $e, e' \in E(n)$ and $s \in S$.

Examples

$e_1 = b(2 \cdot \underline{1})$	$e_2 = \mu x.a(3x + 2e_1) + \underline{1}$
0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Alexandra & Bart COIN Initial Algebras of Terms 24 / 26

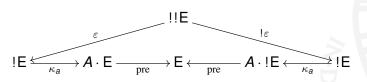
Weighted automata: equations

How do we axiomatize trace semantics for weighted automata?

Weighted automata: equations

How do we axiomatize trace semantics for weighted automata?

We take the same diagram as before



<u>Q</u> \

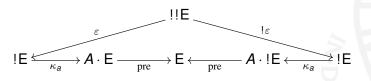
(3)

(3)

Weighted automata: equations

How do we axiomatize trace semantics for weighted automata?

We take the same diagram as before



and write down the equation:

$$a(s(e_1 + e_2)) = a(se_1) + a(se_2).$$

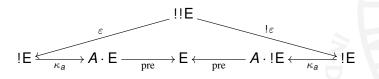
Alexandra & Bart COIN Initial Algebras of Terms 25 / 26

(3)

Weighted automata: equations

How do we axiomatize trace semantics for weighted automata?

We take the same diagram as before



and write down the equation:

$$a(s(e_1 + e_2)) = a(se_1) + a(se_2).$$

same equation as in [Bonsangue, Milius, Silva 2012].

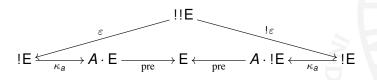
Alexandra & Bart COIN Initial Algebras of Terms 25 / 26

(3)

Weighted automata: equations

How do we axiomatize trace semantics for weighted automata?

We take the same diagram as before



and write down the equation:

$$a(s(e_1 + e_2)) = a(se_1) + a(se_2).$$

same equation as in [Bonsangue, Milius, Silva 2012]. The difference wrt NDA is in the interpretation of !.

Alexandra & Bart COIN Initial Algebras of Terms 25 / 26

Conclusions and Future Work

Conclusions

- Exploited initiality in algebra-valued pre-sheaves
- Systematic description of several examples: lambda-calculi and automata.

Alexandra & Bart COIN Initial Algebras of Terms 26 / 26

Conclusions and Future Work

Conclusions

- Exploited initiality in algebra-valued pre-sheaves
- Systematic description of several examples: lambda-calculi and automata.

Future Work

- Develop the coalgebraic/semantic side of the framework.
- Explore formalization of equations: systematic account of axiomatizations for different equivalences.

Alexandra & Bart COIN Initial Algebras of Terms 26 / 26

Conclusions and Future Work

Conclusions

- Exploited initiality in algebra-valued pre-sheaves
- Systematic description of several examples: lambda-calculi and automata.

Future Work

- Develop the coalgebraic/semantic side of the framework.
- Explore formalization of equations: systematic account of axiomatizations for different equivalences.

Thanks!

Alexandra & Bart COIN Initial Algebras of Terms 26 / 26