

Coalgebraic learning

Alexandra Silva

Automata learning

Active learning

Passive learning

Autonata carning

Active learning

Dana Angluin. Learning regular sets from queries and counterexamples. *Inf. Comput.*, 75(2):87–106, 1987.

Active learning

Dana Angluin. Learning regular sets L* - algorithm

les. Inf. Comput., 75(2):87–106, 1987.

Active learning

Dana Angluin. Learning regular sets L* - algorithm

es. Inf. Comput., 75(2):87–106, 1987.

Deterministic automata — only **simple** regular languages

Active learning

Dana Angluin. Learning regular sets L* - algorithm

es. Inf. Comput., 75(2):87–106, 1987.

Deterministic automata — only **simple** regular languages

simple is beautiful.

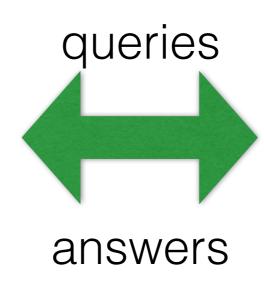
Autonata learning

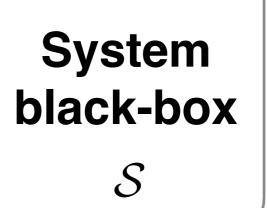
Active learning

Dana Angluin. Learning regular sets

L* - algorithm

es. Inf. Comput., 75(2):87–106, 1987.


Deterministic automata — only **simple** regular languages

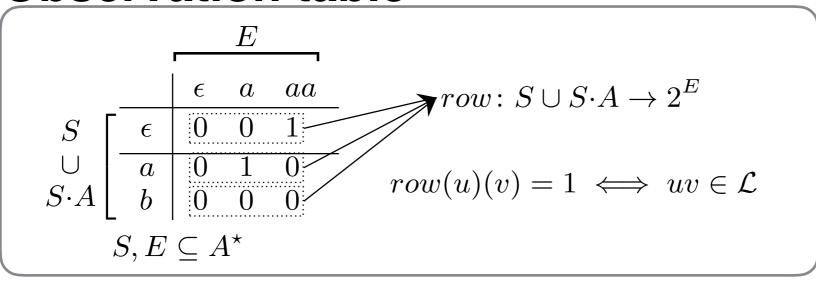

simple is beautiful.

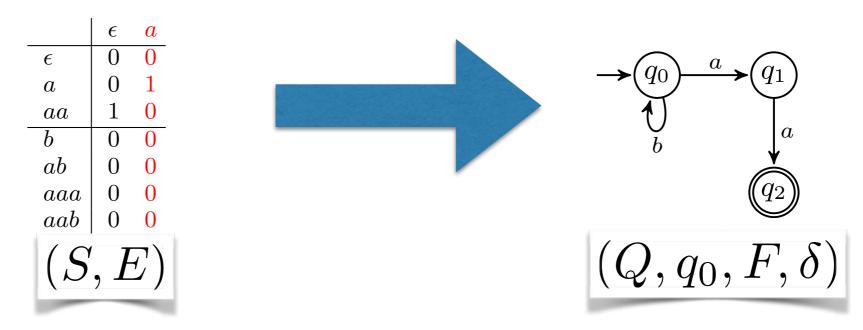
automaton model of \mathcal{S}

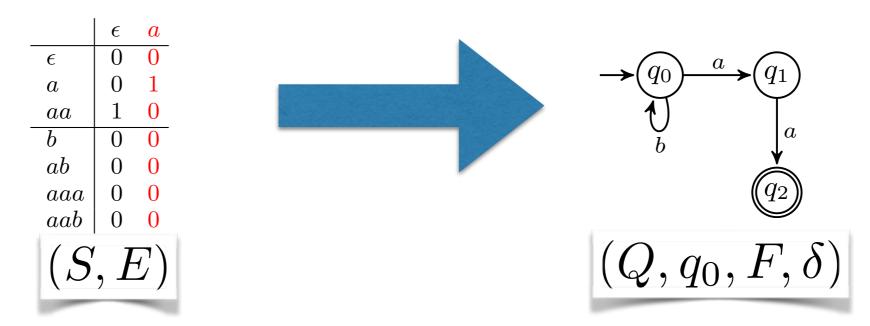
Teacher queries

Membership queries $w \in \mathcal{L}$?

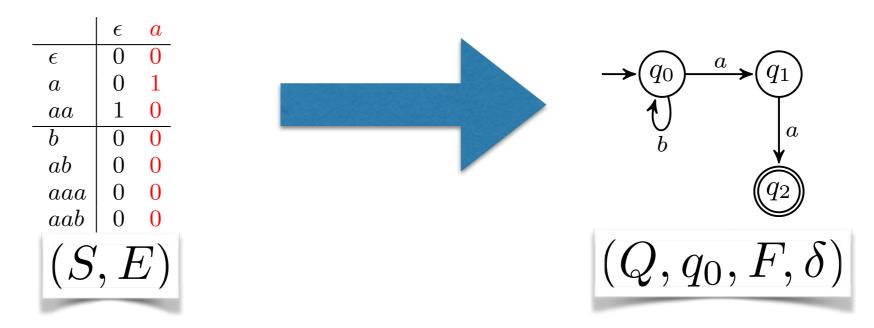
Equivalence queries $\mathcal{L}(H) = \mathcal{L}$?


Yes :-) No :-(+ counter-example


Teacher queries


Membership queries
$$w \in \mathcal{L}$$
?

Equivalence queries
$$\mathcal{L}(H) = \mathcal{L}$$
?


Observation table

- $Q = \{row(s) \mid s \in S\}$ is a finite set of states;
- $F = \{row(s) \mid s \in S, row(s)(\epsilon) = 1\} \subseteq Q$ is the set of final states;
- $q_0 = row(\epsilon)$ is the initial state;
- $\delta \colon Q \times A \to Q$ is the transition function given by $\delta(row(s), a) = row(sa)$.

- $Q = \{row(s) \mid s \in S\}$ is a finite set of states;
- $F = \{row(s) \mid s \in S, row(s)(\epsilon) = 1\} \subseteq Q$ is the set of final states;
- $q_0 = row(\epsilon)$ is the initial state;
- $\delta \colon Q \times A \to Q$ is the transition function given by $\delta(row(s), a) = row(sa)$.

Why is this well-defined?

 $row: S \cup S \cdot A \rightarrow 2^E$

consistent

 $\forall s_1, s_2 \text{ s.t. } row(s_1) = row(s_2) \Rightarrow \forall a \in A \quad row(s_1a) = row(s_2a).$

 $row: S \cup S \cdot A \rightarrow 2^E$

consistent

 $\forall s_1, s_2 \text{ s.t. } row(s_1) = row(s_2) \Rightarrow \forall a \in A \quad row(s_1a) = row(s_2a).$

 $\delta(row(s), a) = row(sa)$ well-defined

 $row: S \cup S \cdot A \rightarrow 2^E$

$\forall t \in S \cdot A \quad \exists s \in S \qquad row(t) = row(s).$

consistent

 $\forall s_1, s_2 \text{ s.t. } row(s_1) = row(s_1) \Rightarrow \forall a \in A \quad row(s_1a) = row(s_2a).$

row(sa) is a state

 $\delta(row(s), a) = row(sa)$ well-defined

 $row: S \cup S \cdot A \rightarrow 2^E$

consistent

 $\forall s_1, s_2 \text{ s.t. } row(s_1) = row(s_2) \Rightarrow \forall a \in A \quad row(s_1a) = row(s_2a).$

 $\delta(row(s), a) = row(sa)$ well-defined

 $row: S \cup S \cdot A \rightarrow 2^E$

consistent

 $\forall s_1, s_2 \text{ s.t. } row(s_1) = row(s_2) \Rightarrow \forall a \in A \quad row(s_1a) = row(s_2a).$

choice of row(s) as representative is irrelevant $\delta(row(s),a)=row(sa) \quad \text{well-defined}$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                       row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                       row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies \mathbf{no}, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
14
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                       row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                       row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies \mathbf{no}, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
14
      return M(S, E)
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      reneat
           while (S, E) is not closed or not consistent
  3
  4
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                       row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
  8
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                       row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
 9
                 E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies \mathbf{no}, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
14
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
14
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
  2 3
      repeat
           while (S, E) is not closed or not consistent
  4
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
14
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

$$egin{array}{c|c} \epsilon & 0 \\ \hline a & 0 \\ b & 0 \\ \hline \end{array}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
14
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
            while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                  find s_1 \in S, a \in A such that
                       row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                 row(s_1) = row(s_2) \text{ and } \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)

E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
           if the Teacher replies no, with a counter example t
12
                 S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

$$\begin{array}{c|c}
\hline
\epsilon & 0 \\
\hline
a & 0 \\
b & 0
\end{array}
\qquad \mathcal{A}_1 = \longrightarrow \boxed{q_0} \nearrow a/b$$

$$q_0 = row(\epsilon) = \{\epsilon \mapsto 0\}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
14
      return M(S, E)
```

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$
 $\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$

$$\begin{array}{c|c}
\hline
\epsilon & 0 \\
\hline
a & 0 \\
b & 0
\end{array}
\qquad
\begin{array}{c}
\mathcal{A}_1 = \longrightarrow \overline{q_0} \longrightarrow a/b \\
q_0 = row(\epsilon) = \{\epsilon \mapsto 0\}
\end{array}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
14
      return M(S, E)
```

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

$$egin{array}{c|cccc} \hline \epsilon & \hline e & \hline e & \hline e & \hline \end{array}$$
 $A_1 = \longrightarrow \overbrace{q_0} = a/b$
 $A_2 = -iccccc$
 $A_3 = -icccccc$
 $A_4 = -iccccc$
 $A_4 = -iccccc$
 $A_6 = -icccc$
 $A_7 = -icccc$
 $A_7 = -icccc$
 $A_7 = -icccc$
 $A_7 = -iccc$
 $A_7 = -icc$
 $A_7 = -iccc$
 $A_7 = -icc$
 $A_7 = -iccc$
 $A_7 = -iccc$
 $A_7 = -icc$
 $A_7 = -icc$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
 9
                 E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

	ϵ	4 (7)
ϵ	0	$\mathcal{A}_1 = \longrightarrow q_0 \longrightarrow a/b$
\overline{a}	0	$q_0 = row(\epsilon) = \{\epsilon \mapsto 0\}$
b	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	t - aa
	-	t = aa

$$egin{array}{c|c} \epsilon & \epsilon & 0 \ \hline a & 0 & 1 \ \hline a & 1 & 0 \ \hline a a & 1 & 0 \ a b & 0 \ a a a & 0 \ a a b & 0 \ \hline \end{array}$$

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

	ϵ
ϵ	0
\overline{a}	0
b	0

$$A_1 = -Q_0$$
 a/b
 $q_0 = row(\epsilon) = \{\epsilon \mapsto 0\}$
 $t = aa$

$$egin{array}{c|cccc} \epsilon & \epsilon & 0 \ a & 0 & 1 \ \hline aa & 1 & 0 \ ab & 0 & aaa & 0 \ aab & 0 & 0 \ aab & 0 & 0 \ \end{array}$$

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
S, E \leftarrow \{\epsilon\}
 2 3
     repeat
           while (S, E) is not closed or not consistent
 4
          if (S, E) is not closed
 5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

$$egin{array}{c|cccc} \epsilon & \epsilon & 0 \ a & 0 & 1 \ \hline aa & 1 & 0 \ ab & 0 & aaa & 0 \ aab & 0 & 0 \ \hline \end{array}$$

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

	ϵ
ϵ	0
\overline{a}	0
b	0

$$A_1 = -Q_0$$
 a/b
 $q_0 = row(\epsilon) = \{\epsilon \mapsto 0\}$
 $t = aa$

$$egin{array}{c|cccc} \epsilon & \epsilon & 0 \ a & 0 & 1 \ \hline aa & 1 & 0 \ ab & 0 & aaa & 0 \ aab & 0 & 0 \ aab & 0 & 0 \ \end{array}$$

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
  7
  8
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                 E \leftarrow E \cup \{ae\}
 9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

	ϵ
ϵ	0
\overline{a}	0
b	0

$$egin{array}{c|cccc} \epsilon & \epsilon & 0 & aa & 1 & aa & 1 & aa & 1 & aaa & 0 & aaa & 0 & aab & 0 & aab$$

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
 7
 8
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
 9
                E \leftarrow E \cup \{ae\}
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
 7
 8
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
  5
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
           Make the conjecture M(S, E)
           if the Teacher replies no, with a counter example t
                S \leftarrow S \cup \mathtt{prefixes}(t)
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

	$\overline{\epsilon}$	$\frac{\epsilon}{0}$		\mathcal{A}_1 :	=	→ (q_0	$\supset a/b$
	\overline{a}	0	q	0 =	rou	$v(\epsilon)$:	$= \{\epsilon$	$\mapsto 0$
	b	0		t	=	ac	ι	
	ϵ			$ \epsilon $	a			
	0	-	ϵ	0	0			
	$0 \searrow$	a	a	0	1			
i	1	α	aa	1	0			
	0	0	b	0	0			
)	0		ab	0	0			
$a \mid$	0		aaa	0	0			
$ab \mid$	0		aab	0	0			
	a	$egin{array}{c c} a & & & \\ \hline & & & \\ & & & \\ \hline $	$ \begin{array}{c cc} \hline \epsilon & 0 \\ \hline a & 0 \\ b & 0 \end{array} $ $ \begin{array}{c ccc} \hline & 0 \\ \hline & 0 \\ \hline & 1 \\ \hline & 0 \\ \hline & $	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c } \hline \epsilon & 0 & A_1 = & \rightarrow (\epsilon) \\ \hline a & 0 & q_0 = row(\epsilon) = \\ b & 0 & t = a\epsilon \\ \hline & 0 & \hline \epsilon & a \\ \hline & 0 & a & 0 & 1 \\ \hline & 0 & a & 1 & 0 \\ \hline & 0 & ab & 0 & 0 \\ aa & 0 & aaa & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaa & 0 & 0 & 0 \\ \hline & aaaaaa & 0 & 0 & 0 \\ \hline & aaaaaa & 0 & 0 & 0 \\ \hline & aaaaaa & 0 & 0 & 0 \\ \hline & aaaaaa & 0 & 0 & 0 \\ \hline & aaaaaa & 0 & 0 & 0 \\ \hline & aaaaaaa & 0 & 0 & 0 \\ \hline & aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$egin{array}{ c c c c c } \hline \epsilon & 0 & A_1 = & & & & & & & & & & & & & & & & & & $

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$
$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

$$\mathcal{A}_2 = b \qquad q_1$$

$$q_1$$

$$q_2$$

```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

	ϵ	U		$p(e) = \{\epsilon \mapsto 0\}$ $p(e) = \{a \mapsto 0\}$ $p(e) = \{a \mapsto 0\}$
$a = \begin{bmatrix} \epsilon \\ a \\ aa \end{bmatrix}$ ab aaa aab	$ \begin{array}{c c} \hline & \\ & \\$	$egin{array}{c} \epsilon & a & \\ aa & \\ b & \\ ab & \\ aaa & \\ aab & \\ \end{array}$	$\begin{array}{cccc} \epsilon & a \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$
$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

L* LEARNER

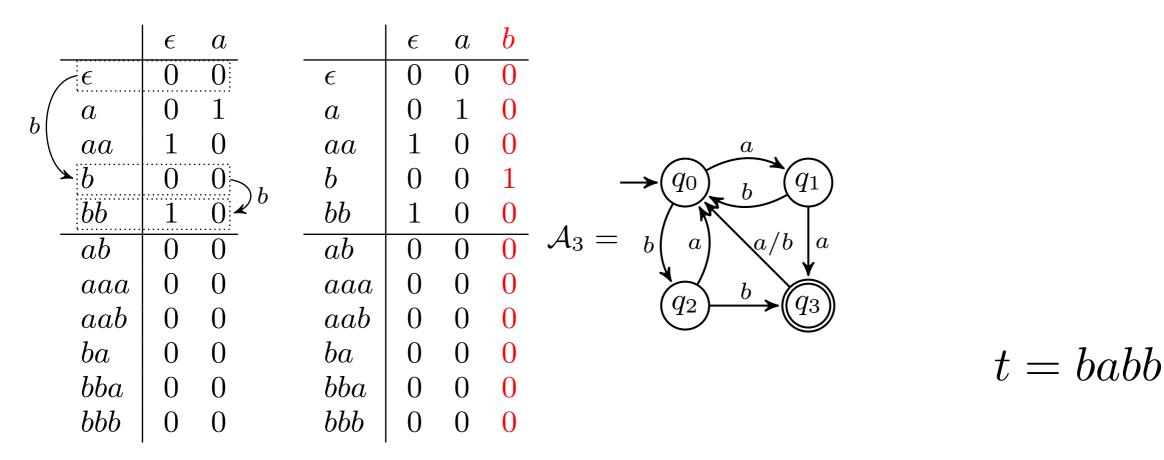
$$\mathcal{A}_2 = b \qquad q_1 \qquad q_1 \qquad q_2 \qquad q_2$$

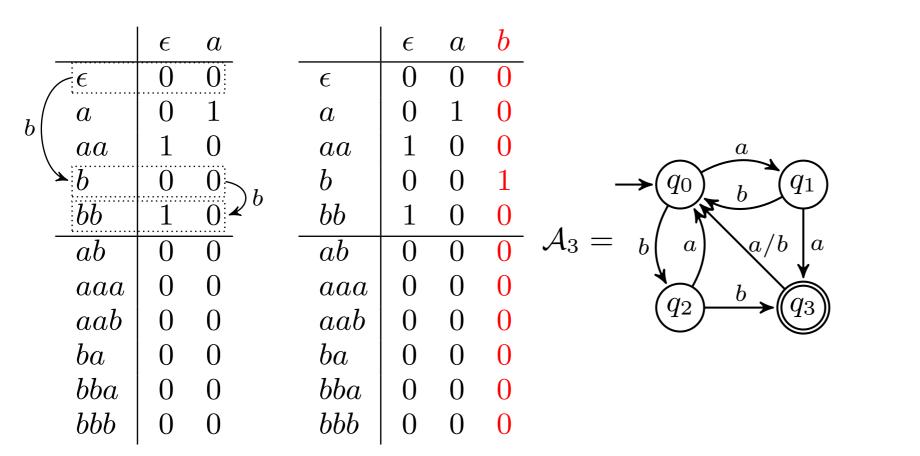
```
S, E \leftarrow \{\epsilon\}
     repeat
 3
           while (S, E) is not closed or not consistent
          if (S, E) is not closed
 5
                find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
 6
          if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
 9
          Make the conjecture M(S, E)
10
          if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
     return M(S, E)
```

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$
$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

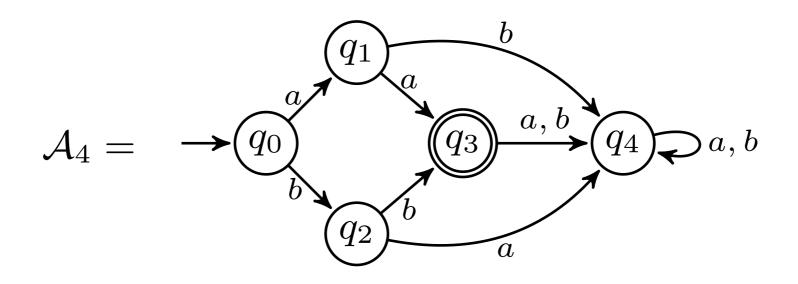
L* LEARNER

$$\mathcal{A}_{2} = b$$


$$t = bb$$


$$q_{0} \xrightarrow{a} q_{1}$$

$$\downarrow^{a}$$


$$q_{2}$$

	ϵ	a		ϵ	a	b	
ϵ	0	0	ϵ	0	0	0	
b a	0	1	a	0	1	0	
aa	1	0	aa	1	0	0	a
b	0	$0 \searrow_{h}$	b	0	0	1	$\rightarrow (q_0) \begin{pmatrix} q_1 \end{pmatrix}$
bb	1	0 🗸 6	bb	1	0	0	
\overline{ab}	0	0	ab	0	0	0	$A_3 = b(a) a/b a$
aaa	0	0	aaa	0	0	0	b
aab	0	0	aab	0	0	0	$(q_2) \xrightarrow{0} (q_3)$
ba	0	0	ba	0	0	0	
bba	0	0	bba	0	0	0	
bbb	0	0	bbb	0	0	0	

t = babb

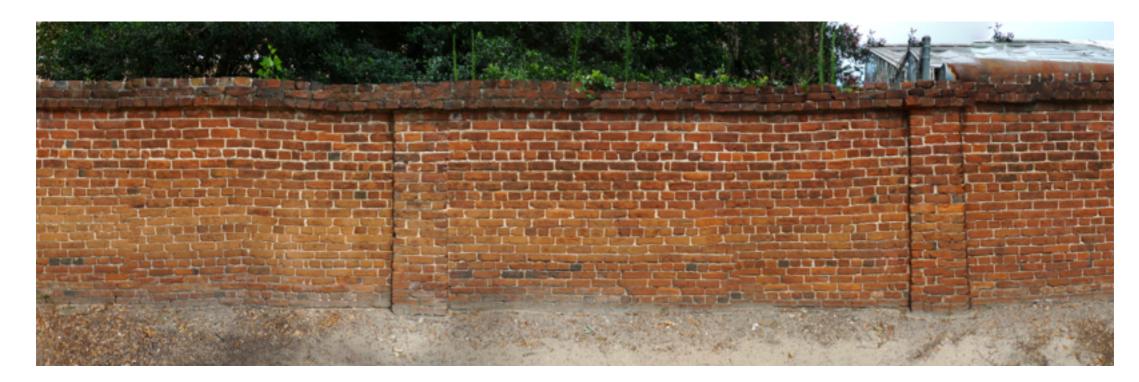
Autonata learning

simple is beautiful.

Applications: Security, formal verification, ...

Generalisations: Mealy machines, I/O automata, ...

Autonata learning


simple is beautiful.

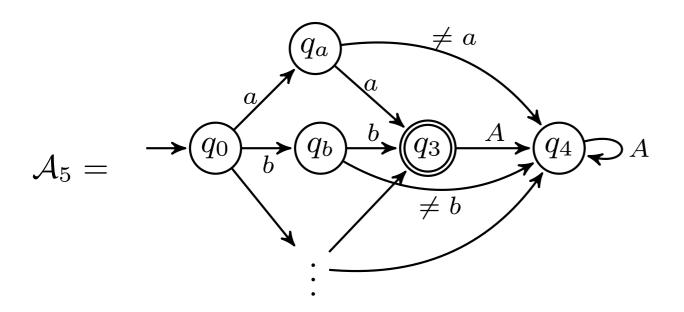
Applications: Security, formal verification, ...

Generalisations: Mealy machines, I/O automata, ...

Autonata learning

simple is beautiful.

Applications: Security, formal verification, ...

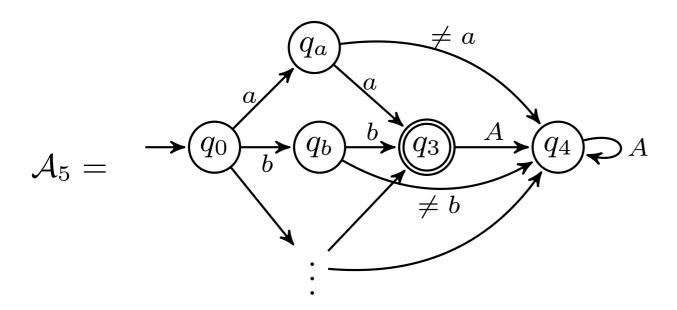

Generalisations: Mealy machines, I/O automata, ...

Infinite alphabets

$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

$$\mathcal{L}_1 = \{ \bar{a}a, \bar{b}b \}$$

infinite automaton


Infinite alphabets

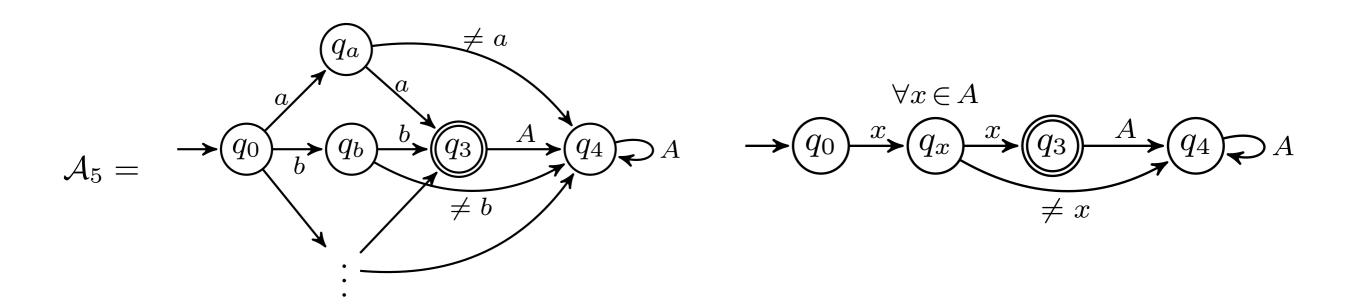
$$\mathcal{L}_n = \{ ww \mid w \in A^*, |w| = n \}$$

 $\mathcal{L}_1 = \{aa, bb\}$

A infinite

$$\mathcal{L}_1 = \{aa, bb, cc, dd, \ldots\}$$

infinite automaton


Infinite alphabets

$$\mathcal{L}_n = \{ww \mid w \in A^*, |w| = n\}$$

$$\mathcal{L}_1 = \{\bar{a}a, \bar{b}b\}$$

A infinite

$$\mathcal{L}_1 = \{aa, bb, cc, dd, \ldots\}$$

infinite automaton

but with a finite representation

name binding alpha-equivalence

.

name binding alpha-equivalence

.

Infinite sets

name binding alpha-equivalence

.

Infinite sets with symmetries

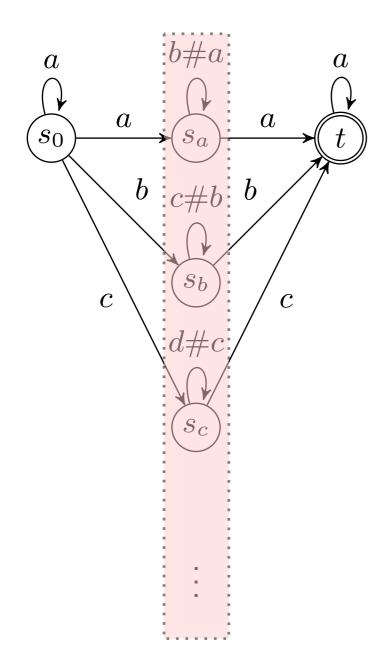
name binding alpha-equivalence

Infinite sets with symmetries

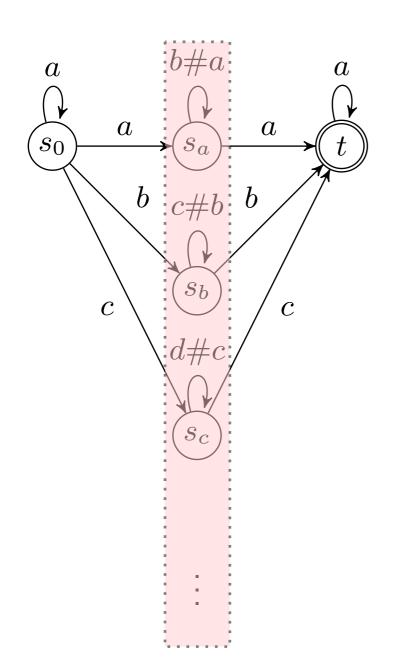
Finitely representable

name binding alpha-equivalence

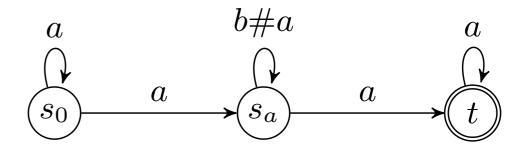
.



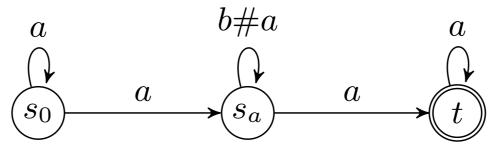
Automata theory over nominal sets


Nomal automata.

A infinite


 $\{w \in \mathbb{A}^* \mid \exists a.a \text{ occurs twice in } w\}$

Nomal attomata.


A infinite

 $\{w \in \mathbb{A}^* \mid \exists a.a \text{ occurs twice in } w\}$

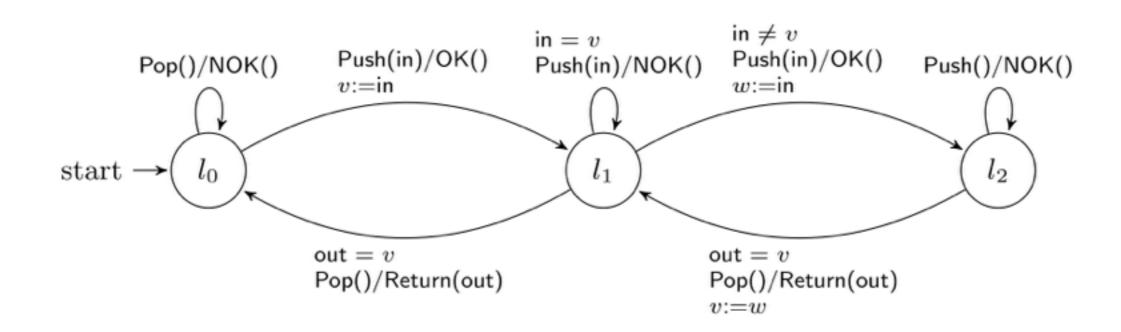
finite representation

Noma ettomata.

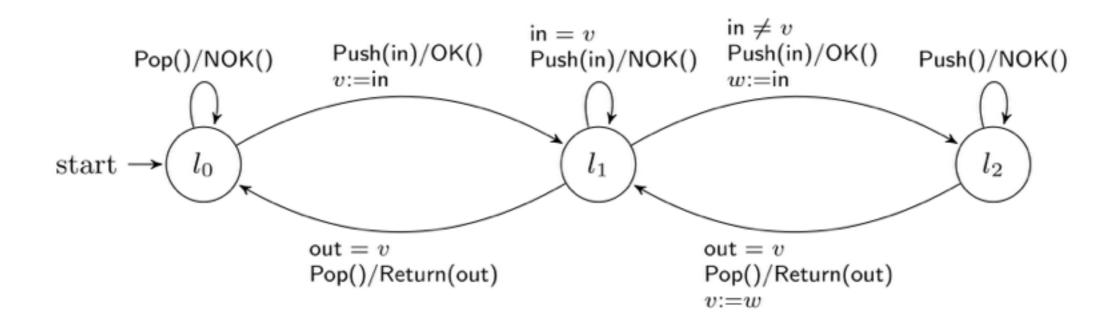
finite representation

canonical permutations

$$X = \{s_0\} + \mathbb{A} + \{t\}$$


$$\pi: \mathbb{A} \to \mathbb{A}$$

$$s_a \mapsto s_{\pi a}$$

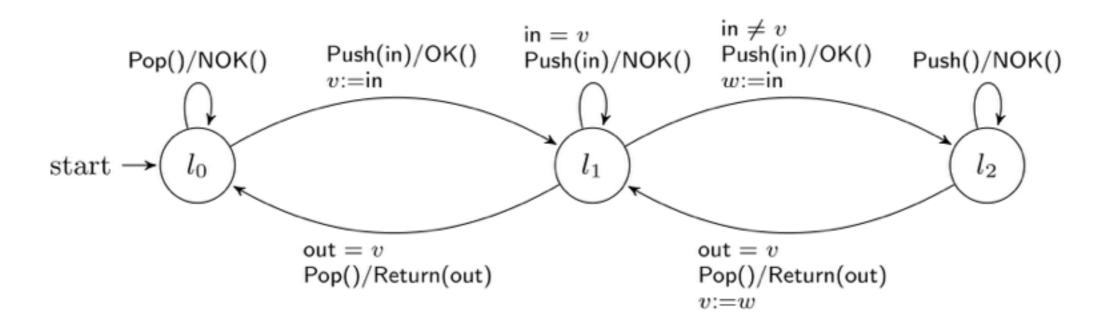

transition closed under permutations equivariant

$$s_a \xrightarrow{a} t \Rightarrow s_{\pi a} \xrightarrow{\pi a} t$$

Nomal automata.

Noma ettomata.

Better or worse than Nominal automata?


Nomal attomata.

Better or worse than Nominal automata?

Nominal automata are just automata in Nom

Nomal attomata.

Better or worse than Nominal automata?

Nominal automata are just automata in Nom

 $\lambda x. \mathbf{Nom}(x)$ research program

This talk

Learning algorithm for nominal automata

This talk

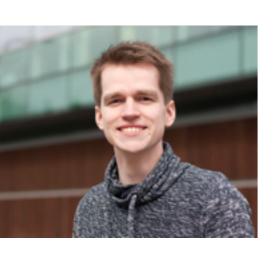
Learning algorithm for nominal automata

using category theory & coalgebra

This talk

Learning algorithm for nominal automata

using category theory & coalgebra


Angluin meets the Warsaw group

 $(\lambda x.\mathbf{Nom}(x))(L^*)$

Credits

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski. Learning Nominal Automata.

Bart Jacobs, Alexandra Silva. **Automata Learning: A Categorical Perspective.**


```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
 9
                E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
  5
                      row(s_1a) \neq row(s), for all s \in S
                 S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                 find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
 9
                 E \leftarrow E \cup \{ae\}
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                 S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

range over infinite sets

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
  5
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
  9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

range over infinite sets

finding witnesses potentially requires checking infinite rows

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
  9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

range over infinite sets

finding witnesses potentially requires checking infinite rows

t has only finitely many prefixes, but an infinite S is necessary

```
L* LEARNER
     S, E \leftarrow \{\epsilon\}
     repeat
                                                                           range over infinite sets
 3
         while (S, E) is not closed or not consistent
         if (S, E) is not closed
              find s_1 \in S, a \in A such that
                   row(s_1a) \neq row(s), for all s \in S
                                                                                finding witnesses potentially
              S \leftarrow S \cup \{s_1a\}
 6
         if (S, E) is not consistent
                                                                               requires checking infinite rows
              find s_1, s_2 \in S, a \in A, and e \in E such that
                   row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
              E \leftarrow E \cup \{ae\}
 9
         Make the conjecture M(S, E)
10
                                                                             t has only finitely many prefixes,
         if the Teacher replies no, with a counter-example t
11
              S \leftarrow S \cup \mathtt{prefixes}(t)
12
     until the Teacher replies yes to the conjecture M(S, E).
                                                                              but an infinite S is necessary
     return M(S, E)
```

no finite automaton accepts \mathcal{L}_1

```
L* LEARNER
      S, E \leftarrow \{\epsilon\}
      repeat
  3
           while (S, E) is not closed or not consistent
           if (S, E) is not closed
                 find s_1 \in S, a \in A such that
                      row(s_1a) \neq row(s), for all s \in S
                S \leftarrow S \cup \{s_1a\}
  6
           if (S, E) is not consistent
                find s_1, s_2 \in S, a \in A, and e \in E such that
                      row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
                E \leftarrow E \cup \{ae\}
  9
           Make the conjecture M(S, E)
10
           if the Teacher replies no, with a counter-example t
11
                S \leftarrow S \cup \mathtt{prefixes}(t)
12
      until the Teacher replies yes to the conjecture M(S, E).
      return M(S, E)
```

range over infinite sets

finding witnesses potentially requires checking infinite rows

t has only finitely many prefixes, but an infinite S is necessary

```
L* LEARNER
     S, E \leftarrow \{\epsilon\}
     repeat
                                                                           range over infinite sets
         while (S, E) is not closed or not consistent
         if (S, E) is not closed
              find s_1 \in S, a \in A such that
                   row(s_1a) \neq row(s), for all s \in S
                                                                                finding witnesses potentially
              S \leftarrow S \cup \{s_1a\}
 6
                                                                               requires checking infinite rows
         if (S, E) is not consistent
              find s_1, s_2 \in S, a \in A, and e \in E such that
                   row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)
              E \leftarrow E \cup \{ae\}
 9
         Make the conjecture M(S, E)
10
         if the Teacher replies no, with a counter-example t
                                                                             t has only finitely many prefixes,
11
              S \leftarrow S \cup \mathtt{prefixes}(t)
     until the Teacher replies yes to the conjecture M(S, E).
                                                                              but an infinite S is necessary
     return M(S, E)
```

- **(P1)** the sets S, S·A and E admit a finite representation up to permutations;
- **(P2)** row is such that $row(\pi(s))(\pi(e)) = row(s)(e)$, for all $s \in S$ and $e \in E$. Observation table admits a finite symbolic representation.

Nominal L*

```
6' \qquad S \leftarrow S \cup \operatorname{orb}(sa)
9' \qquad E \leftarrow E \cup \operatorname{orb}(ae)
12' \qquad E \leftarrow E \cup \operatorname{prefixes}(\operatorname{orb}(t))
```

only 3 lines changed!

Nominal L*

```
6' S \leftarrow S \cup \text{orb}(sa)

9' E \leftarrow E \cup \text{orb}(ae)

12' E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

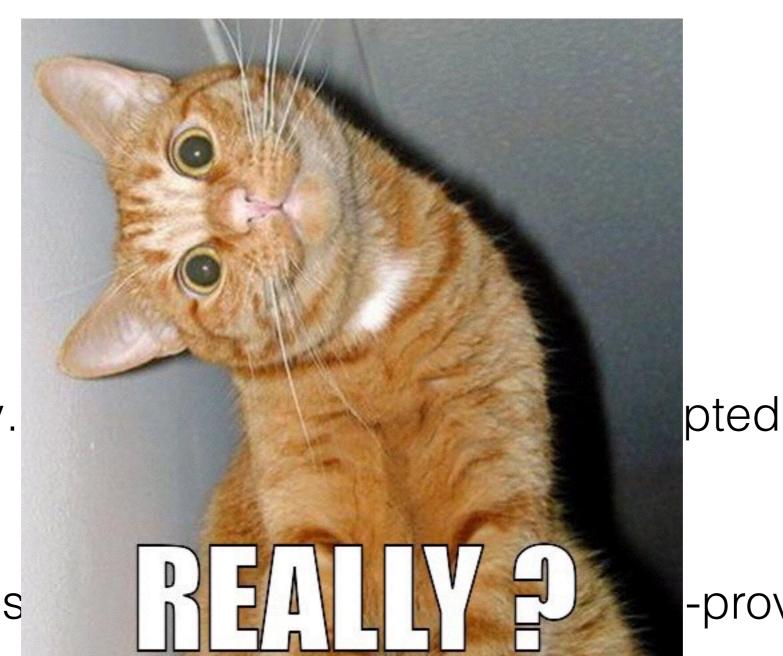
only 3 lines changed!

not really... all definitions have to be adapted to nominal/equivariant.

Nominal L*

```
6' S \leftarrow S \cup \text{orb}(sa)

9' E \leftarrow E \cup \text{orb}(ae)

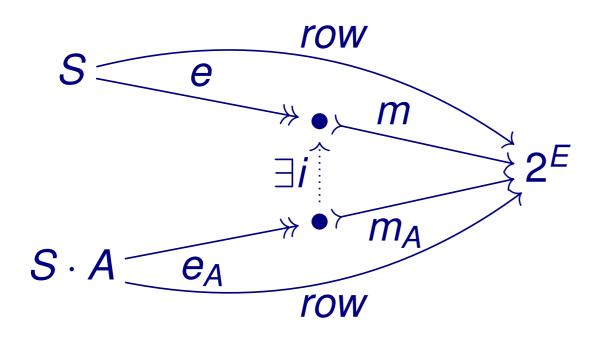

12' E \leftarrow E \cup \text{prefixes}(\text{orb}(t))
```

only 3 lines changed!

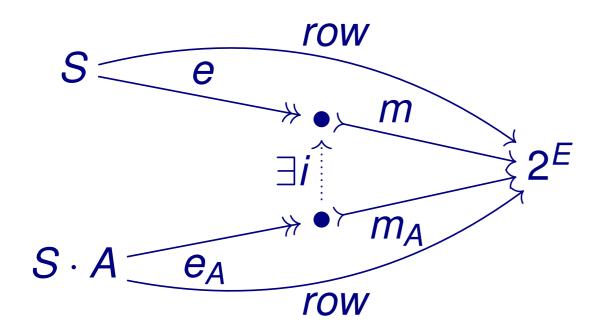
not really... all definitions have to be adapted to nominal/equivariant.

Correctness, termination, ... have to be re-proved!

Nominal L*

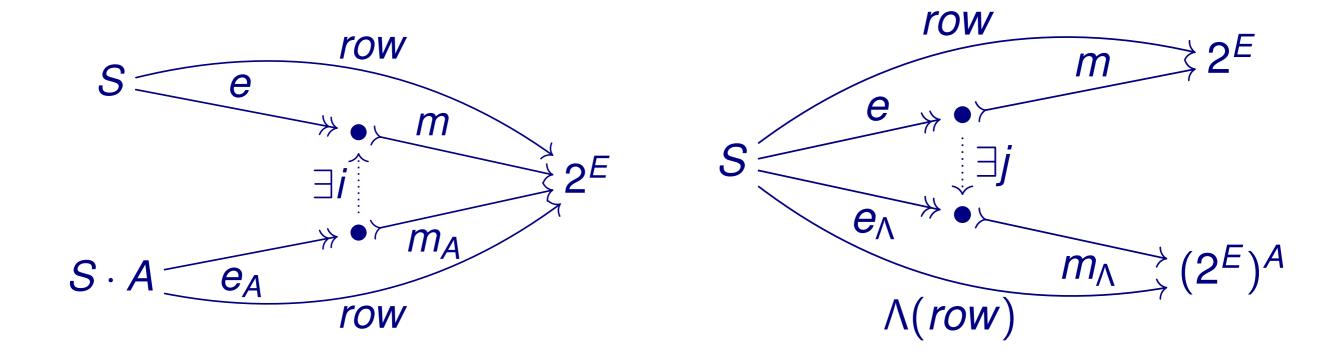


not really.

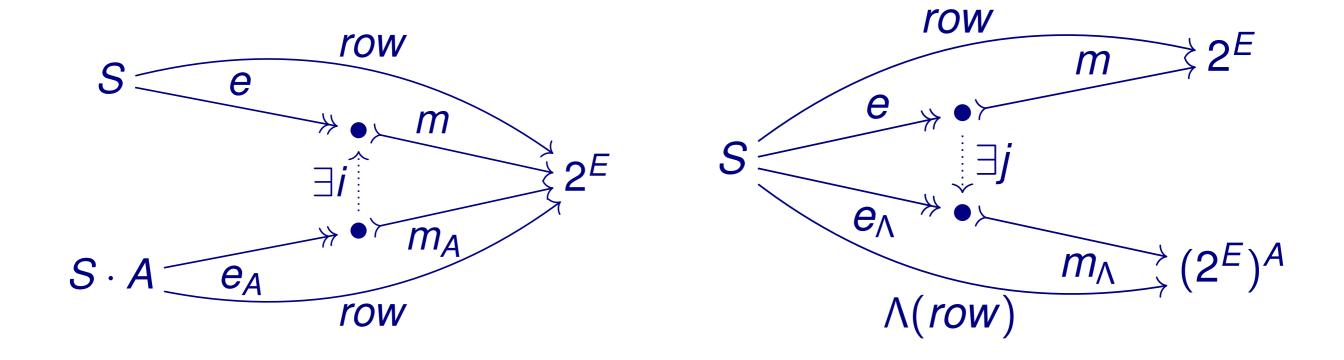

Correctnes

-proved!

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).



(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).


(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

(S, E, row) is closed if for all $t \in S$ A there exists an $s \in S$ such that Pretty.... but is it useful?

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

The power of abstraction

Definitions are the *same*

Proof of correctness is the *same*

The power of abstraction

Definitions are the same

Proof of correctness is the *same*

$$\begin{array}{c|c}
1 & init & final \\
A^* - - - - - \Rightarrow Q - - - - - \Rightarrow 2^{A*} \\
c & \delta & \partial \\
(A^*)^A - - - - \Rightarrow Q^A - - - - \Rightarrow (2^{A*})^A
\end{array}$$

The power of abstraction

Learning weighted automata = vector spaces 2014, Jacobs&Silva

Learning NFAs = join semi lattices 2009, Bollig, Habermehl, Kern, Leucker - Angluin-style learning for NFA

Learning product automata = products Implicitly done by Rivest, Schapire (diversity based learning)

All of these only work for ordinary alphabets

Correctness was easy

Brings almost nothing new to the table

Easy to implement variations
For example, different counter example analysis

Works for any symmetry $Aut(\mathcal{M})$ for any ω -categorical model \mathcal{M} For example homogeneous structures: $(\mathbb{N}, =)$, (\mathbb{Q}, \leq) , (\mathcal{R}, adj) , ... Needed for products to be orbit-finite

Implementation was not easy
(Partly because the library for nominal computation was young)

Implementation is not efficient

No concrete communication with teacher yet (But theoretically possible)

Implementation was not easy
(Partly because the library for nominal computation was young)

Implementation is not efficient

No concrete communication with teacher yet (But theoretically possible)

Abstraction is guidance but there is no free lunch!

Future Work

Implementation

Succinctness

Other symmetries

Other tools

Verification

Conclusions

simple is beautiful.

&

