Coalgebra at the CWI: a brief overview

Alexandra Silva

Centrum Wiskunde & Informatica, The Netherlands

CWI post-doc scientific meeting, February 2011

The team

Jan Rutten

Marcello Bonsangue

Alexandra Silva

Joost Winter

What is Coalgebra?

 Mathematical framework to reason about several dynamical systems and models of computation

In order to study all these systems uniformly we think of them as

$$(S,g:S\rightarrow G(S))$$

Example:

In order to study all these systems uniformly we think of them as

$$(S,g:S\rightarrow G(S))$$

Example:

In order to study all these systems uniformly we think of them as

$$(S,g:S\rightarrow G(S))$$

Example:

4/9

In order to study all these systems uniformly we think of them as

$$(S,g:S\rightarrow G(S))$$

Example:

 Universal coalgebra: the type G is rich enough to determine a notion of behaviour and equivalence

In order to study all these systems uniformly we think of them as

$$(S,g:S\rightarrow G(S))$$

Example:

 Universal coalgebra: the type G is rich enough to determine a notion of behaviour and equivalence

Example: Languages (A*) and language equivalence

Some of our recent achievements

Bonsangue, Rutten & Silva 2009

The results above can be extended uniformly to a larger class of systems (*G*-coalgebras), including: labelled transition systems, infinite trees, Mealy machines, probabilistic automata, weighted automata, etc

Some of our recent achievements

S. Kleene

D. Kozen

Bonsangue, Rutten & Silva 2009

The results above can be extended uniformly to a larger class of systems (*G*-coalgebras), including: labelled transition systems, infinite trees, Mealy machines, probabilistic automata, weighted automata, etc

What does this yield concretely?

- Languages, axiomatizations and algorithms to reason about equivalence for a large class of models
- From the general framework we recover known results (e.g. for LTS Milner's language and axiomatization), but also...
- ... new results, impact in the concurrency community (cf. our CONCUR paper–Bonchi, Bonsangue, Rutten & Silva 2009)

What does this yield concretely?

- Languages, axiomatizations and algorithms to reason about equivalence for a large class of models
- From the general framework we recover known results (e.g. for LTS Milner's language and axiomatization), but also...
- ... new results, impact in the concurrency community (cf. our

What does this yield concretely?

- Languages, axiomatizations and algorithms to reason about equivalence for a large class of models
- From the general framework we recover known results (e.g. for LTS Milner's language and axiomatization), but also...
- ... new results, impact in the concurrency community (cf. our CONCUR paper–Bonchi, Bonsangue, Rutten & Silva 2009)

What we are looking at now

Context Free languages and grammars

• Is it possible to generalize CFL to other models?

Automation

- Coinduction is very suitable for automation
- Can we provide automatic reasoning on equivalence of models?
- Applications in program schematology, compiler certification, etc

What we are looking at now

Context Free languages and grammars

• Is it possible to generalize CFL to other models?

Automation

- Coinduction is very suitable for automation
- Can we provide automatic reasoning on equivalence of models?
- Applications in program schematology, compiler certification, etc

What we are looking at now

Algebraic proof long and requires ingenuity

Coinductive proof fully automatic

Thank you for your attention!