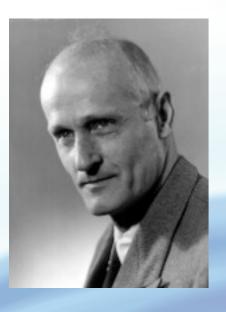
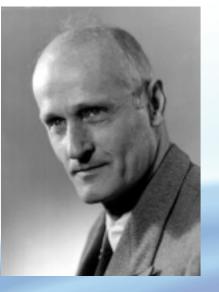
Kleene Coalgebra

Alexandra Silva

(joint work with Jan Rutten, Marcello Bonsangue and Filippo Bonchi)



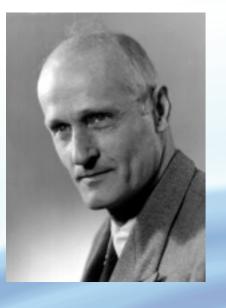
Kleene proposed a language to talk about the most basic state based system



Regular expressions

Kleene proposed a language to talk about the most basic state based system

Deterministic automata

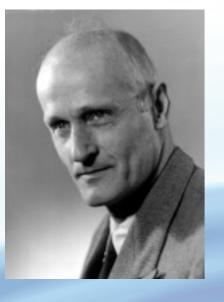


Regular expressions

Kleene proposed a language to talk about the most basic state based system

Deterministic automata

Kozen proposed a fully algebraic set of equations to reason about Kleene's language



Regular expressions

Kleene proposed a language to talk about the most basic state based system

Deterministic automata

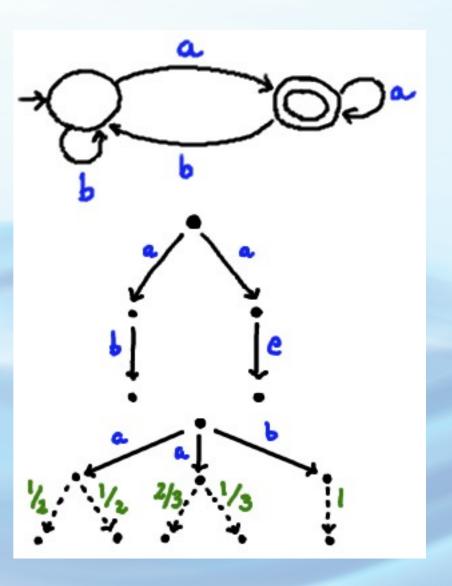
Kozen proposed a fully algebraic set of equations to reason about Kleene's anguage

Kleene algebra

Specify and reason about systems

Specify and reason about systems

state-machines



Specify

and

reason

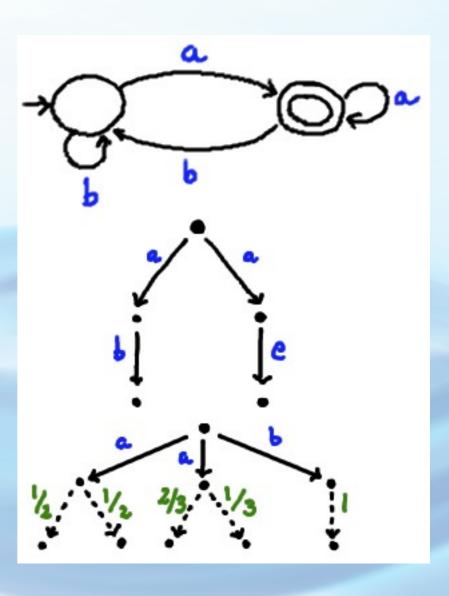
about

systems

Syntax (RE, CCS, ...)

$$a.b.0 + a.c.0$$

state-machines



Specify

and

reason

about

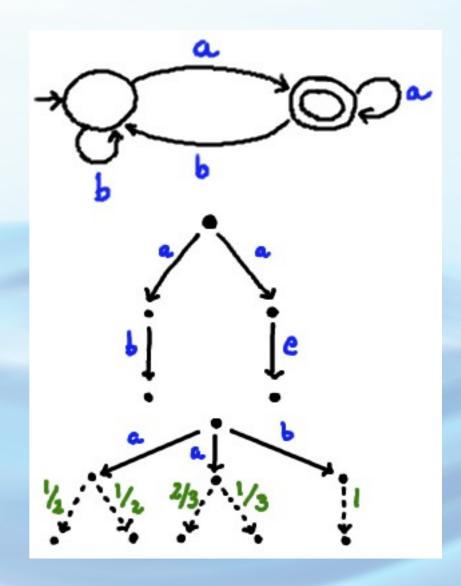
systems

Syntax (RE, CCS, ...)

Axiomatization (KA, ...)

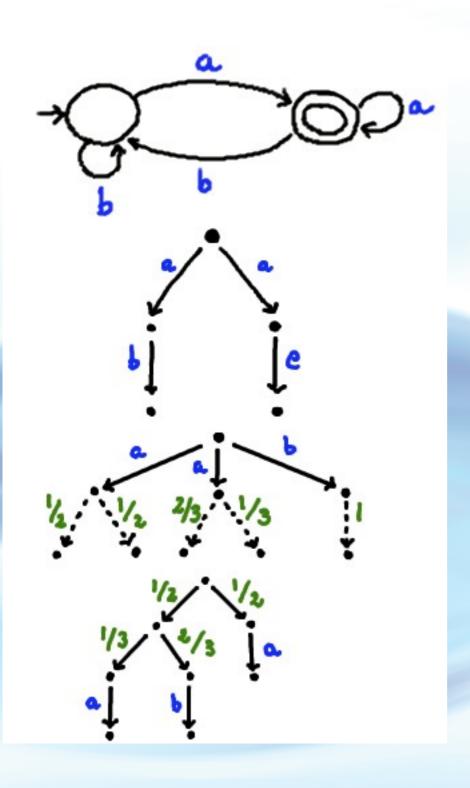
state-machines

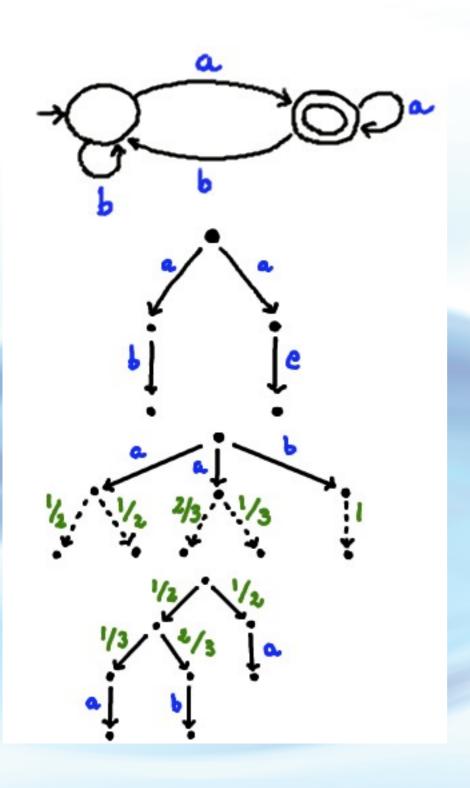
$$P+0=P$$



Specify about and systems reason Syntax **Axiomatization** state-machines (RE, CCS, ...) (KA, ...) 1 + a a = a = b"a(b"a)" P+0=Pa.b.0+ a.c.0 a. (1/2.0 @1/2.0) + ··· p.P @ p'.P = (p+p').P

Can we do all of this uniformly in a single framework?



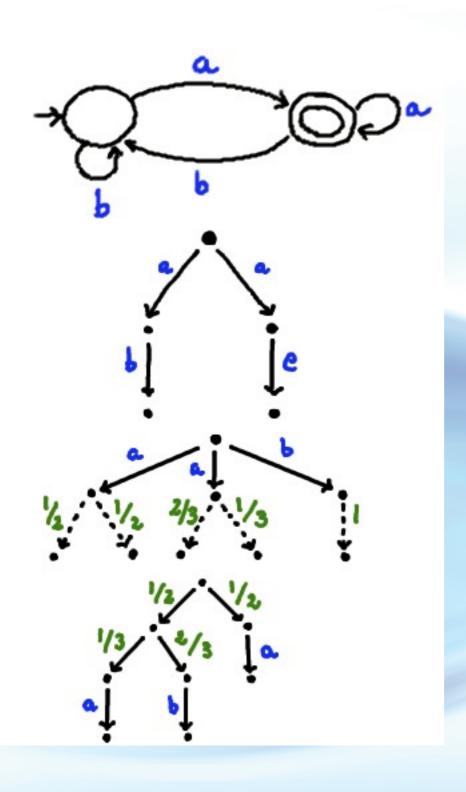


$$(S, f: S \longrightarrow 2 \times S^A)$$



$$(S, f: S \longrightarrow 2 \times S^A)$$

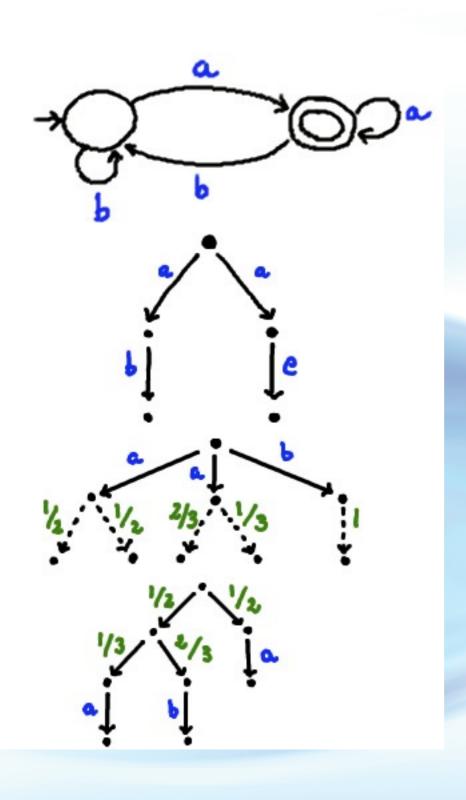
$$(S, f: S \longrightarrow P(S)^A)$$



$$(S, f: S \longrightarrow 2 \times S^A)$$

$$(S, f: S \longrightarrow P(S)^A)$$

$$(S, f: S \longrightarrow PD(S)^A)$$

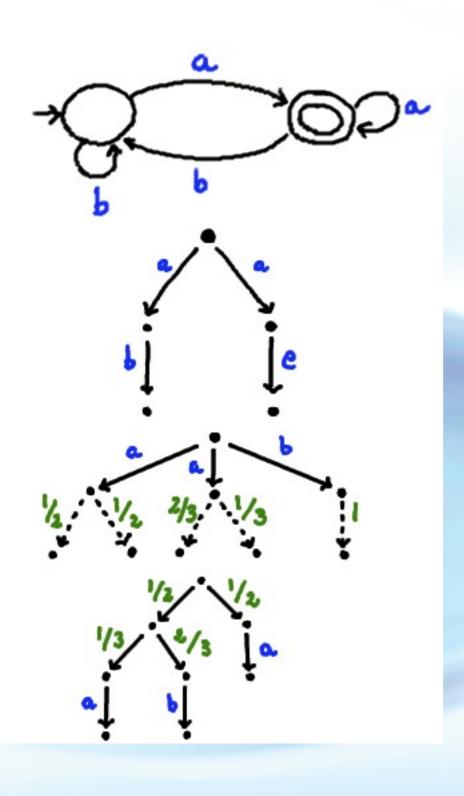


$$(S, f: S \longrightarrow 2 \times S^A)$$

$$(S, f: S \longrightarrow P(S)^A)$$

$$(S, f: S \longrightarrow PD(S)^A)$$

$$(S, f: S \longrightarrow 1 + AxS + D(S))$$

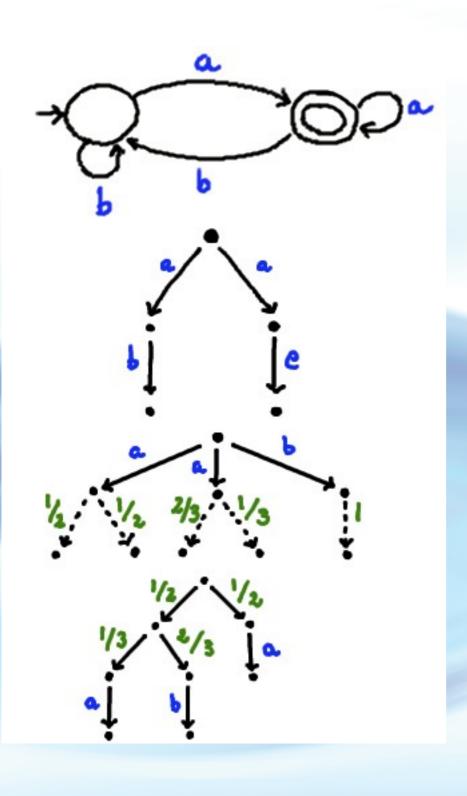


$$(S, f: S \longrightarrow 2 \times S^A)$$

$$(S, f: S \longrightarrow P(S)^A)$$

$$(S, f: S \longrightarrow PD(S)^A)$$

$$(S, f: S \longrightarrow 1 + A \times S + D(S))$$



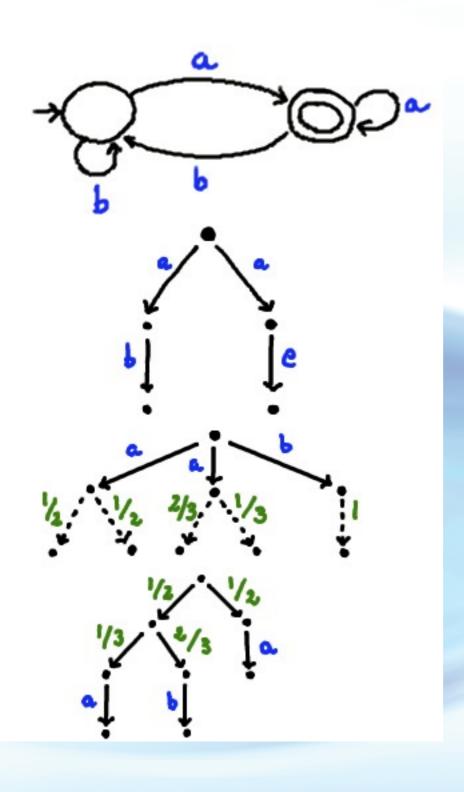
$$(S, f: S \longrightarrow 2 \times S^A)$$

$$(S, f: S \longrightarrow P(S)^A)$$

$$(S, f: S \longrightarrow PD(S)^A)$$

$$(S, f: S \longrightarrow 1 + A \times S + D(S))$$

$$(S, f : S \longrightarrow T(S))$$



$$(S, f: S \longrightarrow 2 \times S^A)$$

$$(S, f: S \longrightarrow P(S)^A)$$

$$(S, f: S \longrightarrow PD(S)^A)$$

$$(S, f: S \longrightarrow 1 + A \times S + D(S))$$

$$(S, f: S \longrightarrow T(S))$$
 T- coalgebras

(I) Can we define a language (syntax) to denote behaviors and ...

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...
- (3)... for a large class of systems uniformly?

generalizing Kleene

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...
- (3)... for a large class of systems uniformly?

generalizing Kleene

generalizing Kozen

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...
- (3)... for a large class of systems uniformly?

generalizing Kleene

generalizing Kozen

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...
- (3)... for a large class of systems uniformly?
- (4) Can coalgebraic methods help: is the type T of the system also enough to derive (1)-(3) above?

generalizing Kleene

generalizing Kozen

- (I) Can we define a language (syntax) to denote behaviors and ...
- (2)... algebraic laws to reason about equivalence ...
- (3)... for a large class of systems uniformly?
- (4) Can coalgebraic methods help: is the type T of the system also enough to derive (1)-(3) above?

Coalgebraic methods

 Mathematical framework to reason about state based systems

Coalgebraic methods

 Mathematical framework to reason about state based systems

Coalgebraic methods

 Mathematical framework to reason about state based systems

 Strenghts: the type of the system is enough to derive a canonical notion of behaviour

and equivalence

language equivalence

languages

(S, f: S T(S))

 $(S, f: S \longrightarrow T(S))$

 $(S, f: S \longrightarrow T(S))$

$$(S, f: S \longrightarrow T(S))$$

The functor T determines:

$$(S, f: S \longrightarrow T(S))$$

The functor T determines:

I) notion of observational equivalence (coalg. bisimulation)

 $(S, f: S \longrightarrow T(S))$

intuition: language equiv.

The functor T determines:

- I) notion of observational equivalence (coalg. bisimulation)
- 2) behavior (final coalgebra)-

intuition: languages

$$(S, f: S \longrightarrow T(S))$$

The functor T determines:

- I) notion of observational equivalence (coalg. bisimulation)
- 2) behavior (final coalgebra)
- 3) set of expressions describing finite systems

The power of T

$$(S, f: S \longrightarrow T(S))$$

The functor T determines:

- I) notion of observational equivalence (coalg. bisimulation)
- 2) behavior (final coalgebra)
- 3) set of expressions describing finite systems
- 4) axioms to prove bisimulation equivalence of expressions

The power of T

$$(S, f: S \longrightarrow T(S))$$

The functor T determines:

- I) notion of observational equivalence (coalg. bisimulation)
- 2) behavior (final coalgebra)
- 3) set of expressions describing finite systems
- 4) axioms to prove bisimulation equivalence of expressions
- I + 2 are classic coalgebra; 3 + 4 are my thesis

Coalgebras

Quantitative coalgebras

- Generalizations of deterministic automata
- Quantitative coalgebras: set of states S and $t: S \rightarrow TS$

$$T::= Id \mid B \mid T \times T \mid T + T \mid T^A \mid \mathbb{M}^T$$

 \mathbb{M} is a monoid. $\mathcal{P}=\mathbf{2}^{ld}$ and $\mathcal{D}_{\omega}=\mathbb{R}^{ld}$

Coalgebras

Quantitative coalgebras

- Generalizations of deterministic automata
- Quantitative coalgebras: set of states S and $t: S \rightarrow TS$

$$T::=Id \mid B \mid T \times T \mid T + T \mid T^A \mid \mathbb{M}^T$$

 \mathbb{M} is a monoid. $\mathcal{P}=2^{ld}$ and $\mathcal{D}_{\omega}=\mathbb{R}^{ld}$

Examples

•
$$T = 2 \times Id^A$$
 Dete

•
$$T = (B \times Id)^A$$

•
$$T = (\mathcal{P}Id)^A$$

•
$$T = \mathcal{PD}(S)^A$$

Deterministic automata

Mealy machines

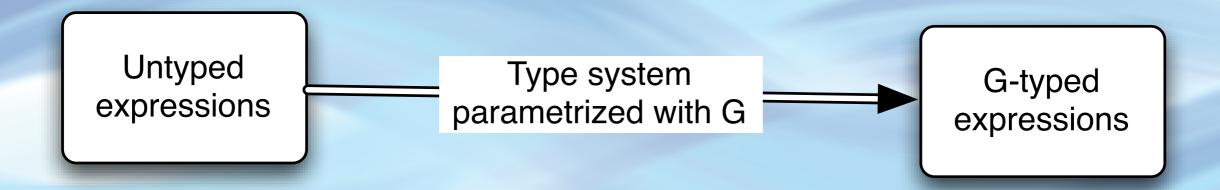
LTS

Simple Segala systems

•

$$E ::= \emptyset \mid \epsilon \mid E \cdot E \mid E + E \mid E^*$$

$$E_T$$
 :: = ?



$$\textit{Exp} \ni \varepsilon \quad :: = \quad \emptyset \mid \varepsilon \oplus \varepsilon \quad \mid \mu \mathbf{X}.\gamma$$

$$Exp \ni \varepsilon ::= \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\gamma$$

$$Exp \ni \varepsilon ::= \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma$$

$$\mid b \qquad B$$

$$\mid I\langle \varepsilon \rangle \mid r\langle \varepsilon \rangle \qquad T_1 \times T_2$$

$$\mid I[\varepsilon] \mid r[\varepsilon] \qquad T_1 + T_2$$

$$Exp \ni \varepsilon ::= \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma$$

$$\mid b \quad B \quad |I\langle \varepsilon \rangle \mid r\langle \varepsilon \rangle \quad T_1 \times T_2$$

$$\mid I[\varepsilon] \mid r[\varepsilon] \quad T_1 + T_2$$

$$\mid a(\varepsilon) \quad T^A \quad |m \cdot \varepsilon \quad M^T$$

LTS expressions –
$$T = (PId)^A = (2^{Id})^A$$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{X}.\varepsilon}_{T} \mid$$

LTS expressions – $T = (PId)^A = (2^{Id})^A$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon \mid a()}_{T} \quad \underbrace{a()}_{A}$$

LTS expressions –
$$T = (PId)^A = (2^{Id})^A$$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon}_{T} \mid \underbrace{a(\underbrace{1 \cdot \varepsilon}_{2^{ld}}) \mid a(\underbrace{0 \cdot \varepsilon}_{2^{ld}})}_{-A}$$

LTS expressions – $T = (\mathcal{P}Id)^A = (2^{Id})^A$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon}_{T} \mid \underbrace{a(\underbrace{1 \cdot \varepsilon}_{2^{ld}}) \mid a(\underbrace{0 \cdot \varepsilon}_{2^{ld}})}_{-A}$$

$$\varepsilon :: = \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma \mid a \cdot \varepsilon$$

LTS expressions – $T = (\mathcal{P}Id)^A = (2^{Id})^A$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon}_{T} \mid \underbrace{a(\underbrace{1 \cdot \varepsilon}_{2^{ld}}) \mid a(\underbrace{0 \cdot \varepsilon}_{2^{ld}})}_{-A}$$

$$\varepsilon :: = \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma \mid a \cdot \varepsilon$$

Markov Chain expressions – $T = \mathcal{D}_{\omega}(Id) = \mathbb{R}^{Id}$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu X.\varepsilon \mid p \cdot \varepsilon}_{T} \quad \underbrace{p \cdot \varepsilon}_{2^{ld}}$$

LTS expressions – $T = (PId)^A = (2^{Id})^A$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon}_{T} \mid \underbrace{a(\underbrace{1 \cdot \varepsilon}_{2^{ld}}) \mid a(\underbrace{0 \cdot \varepsilon}_{2^{ld}})}_{-A}$$

$$\varepsilon :: = \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma \mid a \cdot \varepsilon$$

Markov Chain expressions – $T = \mathcal{D}_{\omega}(Id) = \mathbb{R}^{Id}$ $\sum_{i} p_{i} = 1$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu X.\varepsilon \mid p \cdot \varepsilon}_{T} \mid \underbrace{p \cdot \varepsilon}_{2^{ld}}$$

LTS expressions – $T = (\mathcal{P}Id)^A = (2^{Id})^A$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x.\varepsilon}_{T} \mid \underbrace{a(\underbrace{1 \cdot \varepsilon}_{2^{ld}}) \mid a(\underbrace{0 \cdot \varepsilon}_{2^{ld}})}_{-A}$$

$$\varepsilon :: = \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma \mid a \cdot \varepsilon$$

Markov Chain expressions – $T = \mathcal{D}_{\omega}(Id) = \mathbb{R}^{Id}$ $\sum_{i} p_{i} = 1$

$$\varepsilon :: = \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu X.\varepsilon \mid p \cdot \varepsilon}_{T} \mid \underbrace{p \cdot \varepsilon}_{2^{ld}}$$

$$\varepsilon :: = \mu x.\varepsilon \mid \bigoplus_{i \in 1...n} p_i \cdot \varepsilon$$
 for $p_i \in (0, 1]$ such that $\sum_{i \in 1...n} p_i = 1$

Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- \bigcirc A = L(A), for some finite automaton A.
- A = L(r), for some regular expression r.

Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- \bigcirc A = L(A), for some finite automaton A.
- A = L(r), for some regular expression r.

The goal is:

T-expressions correspond to Finite T-coalgebras and vice-versa. What does it mean correspond?

Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- \bigcirc A = L(A), for some finite automaton A.
- A = L(r), for some regular expression r.

The goal is:

T-expressions correspond to Finite T-coalgebras and vice-versa. What does it mean correspond?

correspond \equiv mapped to the same element of the final coalgebra \equiv bisimilar

Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- \bullet A = L(A), for some finite automaton A.
- A = L(r), for some regular expression r.

The goal is:

T-expressions correspond to Finite T-coalgebras and vice-versa. What does it mean correspond?

correspond = mapped to the same element of the final coalgebra = bisimilar

intuition: language equiv

intuition: languages

Theorem

- Let (S,g) be a T-coalgebra. If S is finite then there exists for any $s \in S$ a T-expression ε_s such that $\varepsilon_s \sim s$.
- ② For all T-expressions ε , there exists a finite T-coalgebra (S,g) such that $\exists_{s \in S} s \sim \varepsilon$.

The proof provides algorithms to construct an expression from a system and vice-versa.


```
\begin{array}{lll}
\varepsilon_{1} \oplus \varepsilon_{2} & \equiv & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & \equiv & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & \equiv & \varepsilon_{1}, \quad T \quad polynomial \\
\varepsilon \oplus \emptyset & \equiv & \varepsilon
\end{array} \right\} T
```

```
\begin{array}{lll}
\varepsilon_{1} \oplus \varepsilon_{2} & \equiv & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & \equiv & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & \equiv & \varepsilon_{1}, \quad T \quad polynomial \\
\varepsilon \oplus \emptyset & \equiv & \varepsilon
\end{array}

\begin{array}{lll}
\mu x. \gamma & \equiv & \gamma [\mu x. \gamma / x] \\
\gamma [\varepsilon / x] \equiv \varepsilon & \Rightarrow & \mu x. \gamma \equiv \varepsilon
\end{array}

\begin{array}{lll}
FP
```

$$\begin{array}{ccc}
\varepsilon_{1} \oplus \varepsilon_{2} & \equiv & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & \equiv & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & \equiv & \varepsilon_{1}, \quad T \quad polynomial \\
\varepsilon \oplus \emptyset & \equiv & \varepsilon
\end{array}$$

$$\begin{array}{ccc}
\mu x. \gamma & \equiv & \gamma[\mu x. \gamma/x] \\
\gamma[\varepsilon/x] \equiv \varepsilon & \Rightarrow & \mu x. \gamma \equiv \varepsilon
\end{array}$$

$$\begin{array}{ccc}
\emptyset & \equiv & 0 \\
m_{1} \cdot \varepsilon \oplus m_{2} \cdot \varepsilon & \equiv & (m_{1} + m_{2}) \cdot \varepsilon
\end{array}$$

$$\begin{array}{cccc}
\varepsilon_{1} \oplus \varepsilon_{2} & \equiv & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & \equiv & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & \equiv & \varepsilon_{1}, & T \text{ polynomial} \\
\varepsilon \oplus \emptyset & \equiv & \varepsilon
\end{array}$$

$$\begin{array}{cccc}
\mu x. \gamma & \equiv & \gamma[\mu x. \gamma/x] \\
\gamma[\varepsilon/x] \equiv \varepsilon & \Rightarrow & \mu x. \gamma \equiv \varepsilon
\end{array}$$

$$\begin{array}{cccc}
\phi & \equiv & 0 \\
m_{1} \cdot \varepsilon \oplus m_{2} \cdot \varepsilon & \equiv & (m_{1} + m_{2}) \cdot \varepsilon
\end{array}$$

$$\begin{array}{cccc}
I(\emptyset) & \equiv & \emptyset \\
I(\varepsilon_{1}) \oplus I(\varepsilon_{2}) & \equiv & I(\varepsilon_{1} \oplus \varepsilon_{2}) \\
r(\emptyset) & \equiv & \emptyset \\
r(\varepsilon_{1}) \oplus r(\varepsilon_{2}) & \equiv & r(\varepsilon_{1} \oplus \varepsilon_{2})
\end{array}$$

$$\begin{array}{cccc}
T_{1} \times T_{2}$$

Similar for $T_1 + T_2$ and T^A

$$\begin{array}{lll}
\varepsilon_{1} \oplus \varepsilon_{2} & \equiv & \varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3}) & \equiv & (\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & \equiv & \varepsilon_{1}, & T \text{ polynomial} \\
\varepsilon \oplus \emptyset & \equiv & \varepsilon
\end{array}$$

$$\begin{array}{lll}
\mu x. \gamma & \equiv & \gamma[\mu x. \gamma/x] \\
\gamma[\varepsilon/x] \equiv \varepsilon & \Rightarrow & \mu x. \gamma \equiv \varepsilon
\end{array}$$

$$FP$$

$$\emptyset \qquad \equiv 0 \\
m_1 \cdot \varepsilon \oplus m_2 \cdot \varepsilon \equiv (m_1 + m_2) \cdot \varepsilon$$

$$\begin{array}{ll}
I(\emptyset) & \equiv & \emptyset \\
I(\varepsilon_1) \oplus I(\varepsilon_2) & \equiv & I(\varepsilon_1 \oplus \varepsilon_2) \\
r(\emptyset) & \equiv & \emptyset \\
r(\varepsilon_1) \oplus r(\varepsilon_2) & \equiv & r(\varepsilon_1 \oplus \varepsilon_2)
\end{array}$$

$$T_1 \times T_2$$

Similar for $T_1 + T_2$ and T^A

Sound and complete w.r.t ~

Results I: Stratified systems

$$\varepsilon :: = \mu x \cdot \varepsilon \mid x \mid \langle b, \varepsilon \rangle \mid \bigoplus_{i \in 1 \cdots n} p_i \cdot \varepsilon_i \mid \downarrow$$

where $b \in B$, $p_i \in (0, 1]$ and $\sum_{i \in 1...n} p_i = 1$

$$(\varepsilon_{1} \oplus \varepsilon_{2}) \oplus \varepsilon_{3} \equiv \varepsilon_{1} \oplus (\varepsilon_{2} \oplus \varepsilon_{3})$$

$$\varepsilon_{1} \oplus \varepsilon_{2} \equiv \varepsilon_{2} \oplus \varepsilon_{1}$$

$$(p_{1} \cdot \varepsilon) \oplus (p_{2} \cdot \varepsilon) \equiv (p_{1} + p_{2}) \cdot \varepsilon$$

$$\varepsilon[\mu x.\varepsilon/x] \equiv \mu x.\varepsilon$$

$$\gamma[\varepsilon/x] \equiv \varepsilon \Rightarrow \mu x.\gamma \equiv \varepsilon$$

Same syntax as in [van Glabbeek, Smolka and Steffen'95] and new axiomatization (inexistent).

Results II: Segala systems

```
\varepsilon' :: = \bigoplus_{i \in 1 \dots n} p_i \cdot \varepsilon_i
                                                                                                                   where a \in A, p_i \in (0, 1] and \sum_{i \in 1...n} p_i = 1
 (\varepsilon_1 \boxplus \varepsilon_2) \boxplus \varepsilon_3 \equiv \varepsilon_1 \boxplus (\varepsilon_2 \boxplus \varepsilon_3)
\varepsilon_1 \boxplus \varepsilon_2 \equiv \varepsilon_2 \boxplus \varepsilon_1
\varepsilon \boxplus \emptyset \equiv \varepsilon
\varepsilon \boxplus \varepsilon \equiv \varepsilon
(\varepsilon_1' \oplus \varepsilon_2') \oplus \varepsilon_3' \equiv \varepsilon_1' \oplus (\varepsilon_2' \oplus \varepsilon_3')
\varepsilon_1' \oplus \varepsilon_2' \equiv \varepsilon_2' \oplus \varepsilon_1'
 (p_1 \cdot \varepsilon) \oplus (p_2 \cdot \varepsilon) \equiv (p_1 + p_2) \cdot \varepsilon
\varepsilon[\mu \mathbf{x}.\varepsilon/\mathbf{x}] \equiv \mu \mathbf{x}.\varepsilon
\gamma[\varepsilon/\mathbf{x}] \equiv \varepsilon \Rightarrow \mu \mathbf{x}. \gamma \equiv \varepsilon
```

 $\varepsilon :: = \emptyset \mid \varepsilon \boxplus \varepsilon \mid \mu x.\varepsilon \mid x \mid a(\{\varepsilon'\})$

Same syntax and axioms as in [Deng and Palamidessi'05]

Results III: Pnueli-Zuck systems

```
\varepsilon' :: = \bigoplus_{i \in 1 \dots n} p_i \cdot \varepsilon''_i
\varepsilon'' :: = \emptyset \mid \varepsilon'' \boxplus \varepsilon'' \mid a(\{\varepsilon\})
                                                                                           where a \in A, p_i \in (0, 1] and \sum_{i \in 1} p_i p_i = 1
 (\varepsilon_1 \boxplus \varepsilon_2) \boxplus \varepsilon_3 \equiv \varepsilon_1 \boxplus (\varepsilon_2 \boxplus \varepsilon_3)
 \varepsilon_1 \boxplus \varepsilon_2 \equiv \varepsilon_2 \boxplus \varepsilon_1
 \varepsilon \boxplus \emptyset \equiv \varepsilon
 \varepsilon \boxplus \varepsilon \equiv \varepsilon
 (\varepsilon_1' \oplus \varepsilon_2') \oplus \varepsilon_3' \equiv \varepsilon_1' \oplus (\varepsilon_2' \oplus \varepsilon_3') \varepsilon_1' \oplus \varepsilon_2' \equiv \varepsilon_2' \oplus \varepsilon_1'
 (p_1 \cdot \varepsilon'') \oplus (p_2 \cdot \varepsilon'') \equiv (p_1 + p_2) \cdot \varepsilon''
\varepsilon[\mu \mathbf{x}.\varepsilon/\mathbf{x}] \equiv \mu \mathbf{x}.\varepsilon
 \gamma[\varepsilon/\mathbf{X}] \equiv \varepsilon \Rightarrow \mu \mathbf{X}. \gamma \equiv \varepsilon
```

New syntax and axiomatization.

 $\varepsilon :: = \emptyset \mid \varepsilon \boxplus \varepsilon \mid \mu x.\varepsilon \mid x \mid \{\varepsilon'\}$

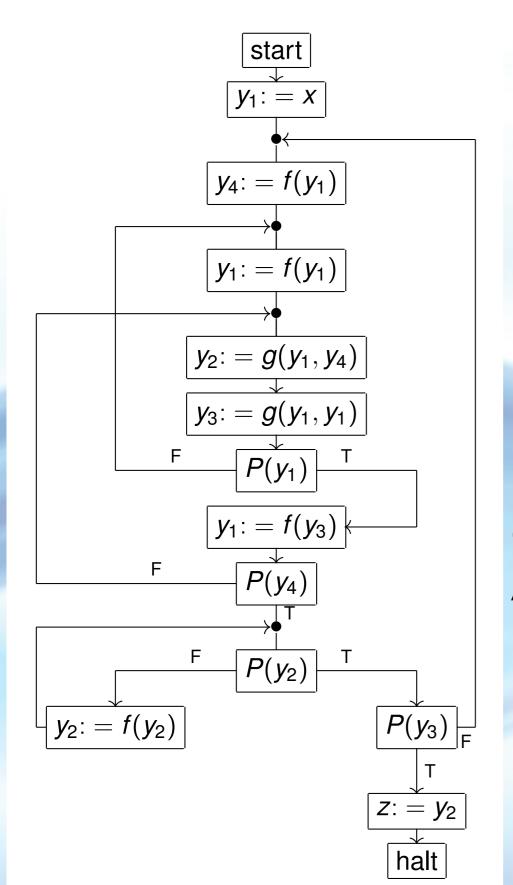
Conclusions

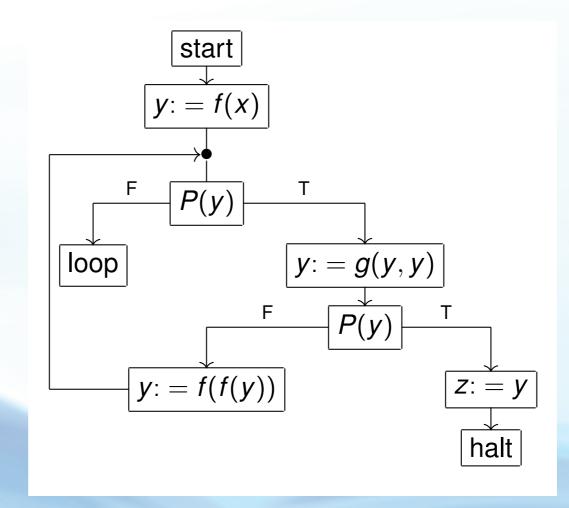
- Framework to uniformly derive language and axioms for quantitative coalgebras (weighted automata, probabilistic automata, etc)
- Examples show the effectiveness of the framework: known syntaxes recovered, new ones derived.

Future work

- Extend the syntax with new operators (paralell composition, etc)
- Coalgebraic context-free counterpart
- Automation: Circ

Why should we care about coalgebra?





Original proof: complex graph transformation Algebraic proof: beautiful, but long and requires (Kozen) ingenuity

Coinductive proof fully automatic (uses Kozen's coinductive KAT)