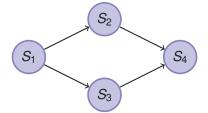


Layer by Layer: combining monads

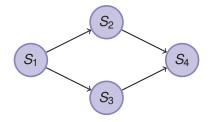
Fredrik Dahlqvist, Alexandra Silva, Louis Parlant

October 16, 2018

A simple network:



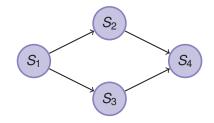
A simple network:



$$t = (sw = S_1; pt = 2; (sw \leftarrow S_2; pt \leftarrow 1) \oplus_{.9} drop)$$

& $(sw = S_1; pt = 3; sw \leftarrow S_3; p \leftarrow 1)$
& $(sw = S_2; pt = 4; sw \leftarrow S_4; p \leftarrow 2)$
& $(sw = S_3; pt = 4; sw \leftarrow S_4; p \leftarrow 3)$

A simple network:



Topology:
$$t = (sw = S_1; pt = 2; (sw \leftarrow S_2; pt \leftarrow 1) \oplus_{.9} \operatorname{drop})$$

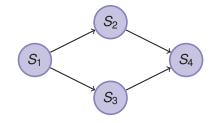
$$\&(sw = S_1; pt = 3; sw \leftarrow S_3; p \leftarrow 1)$$

$$\&(sw = S_2; pt = 4; sw \leftarrow S_4; p \leftarrow 2)$$

$$\&(sw = S_3; pt = 4; sw \leftarrow S_4; p \leftarrow 3)$$

Forwarding policy: $p = (sw = S_1; pt \leftarrow 2) \& (sw = S_2; pt \leftarrow 4)$

A simple network:



Topology:
$$t = (sw = S_1; pt = 2; (sw \leftarrow S_2; pt \leftarrow 1) \oplus_{.9} \operatorname{drop})$$

$$\&(sw = S_1; pt = 3; sw \leftarrow S_3; p \leftarrow 1)$$

$$\&(sw = S_2; pt = 4; sw \leftarrow S_4; p \leftarrow 2)$$

$$\&(\mathit{sw} = S_3; \mathit{pt} = 4; \mathit{sw} \leftarrow S_4; \mathit{p} \leftarrow 3)$$

Forwarding policy: $p = (sw = S_1; pt \leftarrow 2) \& (sw = S_2; pt \leftarrow 4)$

A packet reaches S_4 : $(t; p)^*$; $(sw = S_4)$

Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}

- Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}
- BUT! The denotation of the operator & is odd...

- Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}
- BUT! The denotation of the operator & is odd...
 - & isn't idempotent.

- \blacksquare Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}
- BUT! The denotation of the operator & is odd...
 - & isn't idempotent.
 - ; does not distribute over &

- Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}
- BUT! The denotation of the operator & is odd...
 - & isn't idempotent.
 - ; does not distribute over &
- Why? What's going on?

- Syntactically, ProbNetKAT is a kind of Kleene algebra with probabilistic choice \oplus_{λ}
- BUT! The denotation of the operator & is odd...
 - & isn't idempotent.
 - ; does not distribute over &
- Why? What's going on?
- General question:

How can we add features in a principled and controllable manner?

■ First layer:
 p ::= skip | p; p | a ∈ At
 p; skip = skip; p = p, . . .
Monad: (-)*

Second layer:

```
\begin{split} & p ::= \texttt{abort} \mid p+p \mid \texttt{a} \in \texttt{At} \\ & p+\texttt{abort} = \texttt{abort} + p = p, \\ & p+q = q+p, p+p = p, \dots \\ & \texttt{Monad:} \ \mathcal{P} \end{split}
```

First layer:

$$p ::= skip \mid p; p \mid a \in At$$

 $p; skip = skip; p = p, ...$
Monad: $(-)^*$

- Topping: $p := p \oplus_r p \mid a \in At$ $p \oplus_r q = q \oplus_{1-r} p, \dots$
- Monad: Ɗ
 Second layer:

p := abort | p + p | a
$$\in$$
 At
p + abort = abort + p = p,
p + q = q + p, p + p = p, ...
Monad: \mathcal{P}

■ First layer:
 p ::= skip | p; p | a ∈ At
 p; skip = skip; p = p, . . .
Monad: (-)*

■ The composition of two monads is not necessarily a monad

- The composition of two monads is not necessarily a monad
- Combine monads *S*, *T* via distributive law

 $\lambda: ST \to TS$

- The composition of two monads is not necessarily a monad
- Combine monads S, T via distributive law

$$\lambda: ST \rightarrow TS$$

No distributive law $\mathcal{PD} \to \mathcal{DP}$

- The composition of two monads is not necessarily a monad
- Combine monads *S*, *T* via distributive law

$$\lambda: ST \to TS$$

- No distributive law $\mathcal{PD} \to \mathcal{DP}$
- But there exists a distributive law $(-)^*\mathcal{P} \to \mathcal{P}(-)^*$

- The composition of two monads is not necessarily a monad
- Combine monads S, T via distributive law

$$\lambda: ST \rightarrow TS$$

- No distributive law $\mathcal{PD} \to \mathcal{DP}$
- But there exists a distributive law $(-)^*\mathcal{P} \to \mathcal{P}(-)^*$
- How do we deal with this systematically?

This paper

A general and modular approach for determining:

- (a) if a monad combination by distributive law is possible;
- (b) if it is not possible, exactly which features are broken by the extension; and
- (C) suggests a way to fix the composition by modifying one of the monads.

Monads

■ Monads: a categorical way to encode computational effects:

Monads

■ Monads: a categorical way to encode computational effects: Non-determinism, probabilities, side-effects . . .

Monads

- Monads: a categorical way to encode computational effects: Non-determinism, probabilities, side-effects...
- Applications of monads include programming language semantics, automata theory, etc.
- It is convenient to compositionally *combine* several effects.

Definitions

Definition

A Monad (T, η, μ) on a category C is:

- \blacksquare An endofunctor $T: C \rightarrow C$
- A natural transformation $\eta : 1 \rightarrow T$
- A natural transformation μ : $TT \rightarrow T$

(Verifying some structural properties)

We will consider monads on Set.

Examples

$$\mathcal{P}(A) = \{B \mid B \subseteq A, B \text{ finite}\}$$

$$A^* = \{w_1 \dots w_n \mid n \in \mathbb{N}, w_i \in A\}$$

$$\mathcal{D}(A) = \{f \mid f \text{ probability distribution on } A, \\ \text{and } Supp(f) \text{ finite} \}$$

Algebras

Definition

An *algebra* for the monad T is an object A together with a morphism $\alpha: TA \rightarrow A$.

(Verifying some structural properties involving η and $\mu)$

Algebras

Definition

An *algebra* for the monad T is an object A together with a morphism $\alpha: TA \to A$.

(Verifying some structural properties involving η and μ)

Definition

For a signature Σ and a set of equations E we can define a monad T such that $\mathbf{EM}(T) \simeq \mathbf{Alg}(\Sigma, E)$

Examples

	Σ	E
\mathcal{P}	0, +	x+0=0+x=x
		x+y=y+x
		(x+y)+z=x+(y+z)
		X+X=X
		(join-semilattice)
(-)*	1, ;	x;1=1;x=x
		(x;y);z=x;(y;z)
		(monoid)

S, T monads, $\text{EM}(T) \simeq \text{Alg}(\Sigma_T, E_T)$, $\text{EM}(S) \simeq \text{Alg}(\Sigma_S, E_S)$

Definition

A distributive law of T over S is a natural transformation $\lambda: ST \to TS$ (verifying structural properties)

S, T monads, $EM(T) \simeq Alg(\Sigma_T, E_T)$, $EM(S) \simeq Alg(\Sigma_S, E_S)$

Definition

A distributive law of T over S is a natural transformation $\lambda: ST \to TS$ (verifying structural properties)

If T distributes over S, then:

TS is a monad

$$X \xrightarrow{\eta_X^T} TX \xrightarrow{\eta_{TX}^S} STX \qquad STSTX \xrightarrow{S\lambda_{TX}} SSTTX \xrightarrow{\mu_{TTX}^S} STTX \xrightarrow{S\mu_X^T} STX$$

■ Operations in Σ_S distribute over those of Σ_T

We call *S* the *inner layer*, *T* the *outer layer*.

Remarks and questions:

- Distributive laws are one of the go-to methods to **compose monads**
- Implements a one-way distributivity of algebraic operations
- For two given monads, how to know whether there exists a distributive law?
- How to build it?

Remarks and questions:

- Distributive laws are one of the go-to methods to **compose monads**
- Implements a one-way distributivity of algebraic operations
- For two given monads, how to know whether there exists a distributive law?
- How to build it?

Theorem

Let T be a monoidal monad, then for any finitary signature Σ , there exists a distributive law $\lambda_{\Sigma} \colon H_{\Sigma} T \to TH_{\Sigma}$ of the polynomial functor associated with Σ over T.

Remarks and questions:

- Distributive laws are one of the go-to methods to **compose monads**
- Implements a one-way distributivity of algebraic operations
- For two given monads, how to know whether there exists a distributive law?
- How to build it?

Theorem

Let T be a monoidal monad, then for any finitary signature Σ , there exists a distributive law $\lambda_{\Sigma} \colon H_{\Sigma} T \to TH_{\Sigma}$ of the polynomial functor associated with Σ over T.

Monoidal helps with lifting operations but not equations.

The procedure: 1. Build 'candidate' $\lambda: \textit{ST} \rightarrow \textit{TS}$

 \blacksquare S always given by signature Σ and equations E

- \blacksquare S always given by signature Σ and equations E
- Use monoidal 'tensor'

$$\otimes_{-,-}: T(-) \times T(-) \to T(-\times -)$$

- \blacksquare S always given by signature Σ and equations E
- Use monoidal 'tensor'

$$\otimes_{-,-}: T(-) \times T(-) \to T(-\times -)$$

■ Define a lifting \hat{T} of T on Σ -algebras

$$(extstyle{A},\sigma: extstyle{A}^{\operatorname{ar}(\sigma)} o extstyle{A})_{\sigma\in\Sigma} o (extstyle{TA}, extstyle{T}\sigma\circ\otimes^{\operatorname{ar}(\sigma)}:(extstyle{TA})^{\operatorname{ar}(\sigma)} o extstyle{TA})_{\sigma\in\Sigma}$$

- \blacksquare S always given by signature Σ and equations E
- Use monoidal 'tensor'

$$\otimes_{-,-}: T(-) \times T(-) \to T(-\times -)$$

■ Define a lifting \hat{T} of T on Σ -algebras

$$(\textit{A},\sigma:\textit{A}^{\operatorname{ar}(\sigma)}\rightarrow\textit{A})_{\sigma\in\Sigma}\rightarrow(\textit{TA},\textit{T}\sigma\circ\otimes^{\operatorname{ar}(\sigma)}:(\textit{TA})^{\operatorname{ar}(\sigma)}\rightarrow\textit{TA})_{\sigma\in\Sigma}$$

$$\blacksquare \ \hat{;} : (\mathcal{P}(\mathsf{At})^*)^2 \to \mathcal{P}(\mathsf{At}^*), (U, V) \mapsto \{u; v \mid u \in U, v \in V\}, \ \widehat{\mathsf{skip}} = \{\varepsilon\}$$

- \blacksquare S always given by signature Σ and equations E
- Use monoidal 'tensor'

$$\otimes_{-,-}: T(-) \times T(-) \to T(-\times -)$$

■ Define a lifting \hat{T} of T on Σ -algebras

$$(\textit{A},\sigma:\textit{A}^{\operatorname{ar}(\sigma)}\rightarrow\textit{A})_{\sigma\in\Sigma}\rightarrow(\textit{TA},\textit{T}\sigma\circ\otimes^{\operatorname{ar}(\sigma)}:(\textit{TA})^{\operatorname{ar}(\sigma)}\rightarrow\textit{TA})_{\sigma\in\Sigma}$$

 $\blacksquare \; \hat{;} : (\mathcal{P}(\mathsf{At})^*)^2 \to \mathcal{P}(\mathsf{At}^*), (\mathit{U}, \mathit{V}) \mapsto \{\mathit{u}; \mathit{v} \mid \mathit{u} \in \mathit{U}, \mathit{v} \in \mathit{V}\}, \, \widehat{\mathsf{skip}} = \{\varepsilon\}$

Theorem

If \widehat{T} sends (Σ, E) -algebras to (Σ, E) -algebras, then it defines a distributive law $\lambda : ST \to TS$.

Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$

The procedure: 2. Check if \widehat{T} : $Alg(\Sigma, E) \to Alg(\Sigma, E)$ Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$

The procedure: 2. Check if \widehat{T} : $Alg(\Sigma, E) \to Alg(\Sigma, E)$ Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$

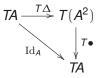


Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$

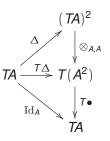
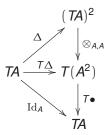
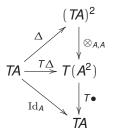


Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$



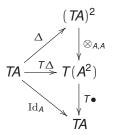
■ We call the upper triangle the *residual diagram* of $x \bullet x = x$.

Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$



- We call the upper triangle the *residual diagram* of $x \bullet x = x$.
- If it commutes then $(TA, \hat{\bullet} : (TA)^2 \to TA) \models x \hat{\bullet} x = x$.

Illustration with idempotency, $(A, \bullet : A^2 \to A) \models x \bullet x = x$



- We call the upper triangle the *residual diagram* of $x \bullet x = x$.
- If it commutes then $(TA, \hat{\bullet} : (TA)^2 \to TA) \models x \hat{\bullet} x = x$.
- If it doesn't, we know exactly where the obstacle is and can troubleshoot accordingly.

■ \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.

- \blacksquare \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!

- \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!
- \blacksquare $\ \ \, \mathbb D$ with \otimes given by the product measure makes the residual diagrams for associativity, units and commutativity commute...

- \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!
- \blacksquare $\mathfrak D$ with \otimes given by the product measure makes the residual diagrams for associativity, units and commutativity commute...
- but neither for IDEMPOTENCY, nor for DISTRIBUTIVITY!

- \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!
- \blacksquare $\ \ \, \mathbb D$ with \otimes given by the product measure makes the residual diagrams for associativity, units and commutativity commute...
- but neither for IDEMPOTENCY, nor for DISTRIBUTIVITY!
- Troubleshooting: remove those axioms

- \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!
- \blacksquare \mathcal{D} with \otimes given by the product measure makes the residual diagrams for associativity, units and commutativity commute...
- but neither for IDEMPOTENCY, nor for DISTRIBUTIVITY!
- Troubleshooting: remove those axioms
- \blacksquare There IS a distributive law over ${\mathcal D}$ of the monad defined by

$$\begin{aligned} &p skip = skip; p = p, \quad (p;q); r = p(q;r), \\ &p + abort = abort + p = p, \quad p + q = q + p, \quad (p+q) + r = p + (q+r), \\ &p abort = abort; p = abort \end{aligned}$$

- \mathcal{P} sends monoids to monoids $\Rightarrow \mathcal{P}(-)^*$ is a monad: the free idempotent semiring monad.
- Distributivity and absorption law are enforced by design!
- \blacksquare \mathcal{D} with \otimes given by the product measure makes the residual diagrams for associativity, units and commutativity commute...
- but neither for IDEMPOTENCY, nor for DISTRIBUTIVITY!
- Troubleshooting: remove those axioms
- \blacksquare There IS a distributive law over ${\mathcal D}$ of the monad defined by

$$\begin{aligned} &p skip = skip; p = p, \quad (p;q); r = p(q;r), \\ &p + abort = abort + p = p, \quad p + q = q + p, \quad (p+q) + r = p + (q+r), \\ &p abort = abort; p = abort \end{aligned}$$

Completely consistent with the semantics of ProbNetKAT

Theorem

Let T be a commutative, relevant and affine monad. For all u and v, T preserves u = v.

Fixing composition – Method 1: changing the inner layer

Idea: remove the faulty laws from the inner layer.

Fixing composition – Method 1: changing the inner layer

Idea: remove the faulty laws from the inner layer.

 $\mathbf{EM}(S) \simeq \mathbf{Alg}(\Sigma_S, E_S)$, $\mathbf{EM}(T) \simeq \mathbf{Alg}(\Sigma_T, E_T)$. Let E_S' be the subset of E_S containing the equations preserved by T.

- lacksquare Obtain S' from $\mathbf{Alg}(\Sigma_S, E_S')$
- Compose T with S', obtain a (Σ, E) algebra, where:

$$\Sigma = (\Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{S}})$$

 $E = (E_T \cup E_S' \cup \text{ distributivity of } \Sigma_S \text{ over } \Sigma_T)$

Method 1: fix the inner layer

Example

 $\mathbb D$ does not preserve idempotency nor distributivity. Drop them and obtain a (Σ, E) algebra where $\Sigma = \{; , 1, +, 0, \oplus_{\lambda}\}$ and E =

- associativity, commutativity, unit laws for +
- \blacksquare equations of $(-)^*$
- absorption p; 0 = 0; p = 0
- \blacksquare equations of \mathcal{D} (convex algebras)
- $\blacksquare p; (q \oplus_{\lambda} r) = (p; q) \oplus_{\lambda} (p; r)$

Method 2: Change the outer layer

Idea: consider the largest submonad preserving the faulty equations.

Method 2: Change the outer layer

Idea: consider the largest submonad preserving the faulty equations.

Example

 $\mathcal{P}\mathcal{D}$ is not a monad as \mathcal{P} does not preserve idempotency. The largest submonad of \mathcal{P} preserving it is the *convex powerset* \mathcal{P}_c

Method 2: Change the outer layer

Idea: consider the largest submonad preserving the faulty equations.

Example

 \mathcal{PD} is not a monad as \mathcal{P} does not preserve idempotency. The largest submonad of \mathcal{P} preserving it is the *convex powerset* \mathcal{P}_c

Two options to fix \mathfrak{PD} :

- 1 Build a monad *PD* that preserves the relevant equations.
- **2** Replace \mathcal{P} by \mathcal{P}_c and then composition works: $\mathcal{P}_c\mathcal{D}$.

Conclusions

- A principled approach to constructing (equational) languages layer by layer.
- Conditions on existence of distributive laws and potential fixing strategies.
- Note: other troubleshooting strategies are possible!

