
CoCaml: Programming with Coinductive Types

Jean-Baptiste Jeannin∗ Dexter Kozen∗ Alexandra Silva†

∗Cornell University

†Radboud University of Nijmegen and Centrum Wiskunde & Informatica

Computer Science Seminar, University of Leicester
November 30, 2012

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 1 / 30

Computing with Coalgebraic Data

• Inductive datatypes and functions on those are well-understood;
coinductive datatypes often considered difficult to handle, not many
programming languages offer the constructs for them.

• OCaml offers the possibility of defining coinductive datatypes, but
the means to define recursive functions on them are limited.

• Often the obvious definitions do not halt or provide the wrong
solution.

• Even so, there are often perfectly good solutions (examples
forthcoming!)

• We show how to extend the language to allow it!

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 2 / 30

Motivating example

type list = N | C of int * list

let rec ones = C(1, ones);; 1,1,1,1,...

let rec alt = C(1, C(2, alt));; 1,2,1,2,...

Infinite lists but. . . regular:

•

1 •

2

A simple function:

let set l = match l with

| N -> N

| C(h, t) -> (insert h (set t));;

We expect set ones = {1} and set alt = {1,2}.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 3 / 30

Motivating example

type list = N | C of int * list

let rec ones = C(1, ones);; 1,1,1,1,...

let rec alt = C(1, C(2, alt));; 1,2,1,2,...

Infinite lists but. . . regular:

•

1 •

2

A simple function:

let set l = match l with

| N -> N

| C(h, t) -> (insert h (set t));;

We expect set ones = {1} and set alt = {1,2}.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 3 / 30

Motivating example

type list = N | C of int * list

let rec ones = C(1, ones);; 1,1,1,1,...

let rec alt = C(1, C(2, alt));; 1,2,1,2,...

Infinite lists but. . . regular:

•

1 •

2

A simple function:

let set l = match l with

| N -> N

| C(h, t) -> (insert h (set t));;

We expect set ones = {1} and set alt = {1,2}.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 3 / 30

What is the problem?

• The function definition above will not halt in OCaml. . .

• even though it is clear what the answer should be;

• Note that this is not a corecursive definition: we are not asking for a
greatest solution or a unique solution in a final coalgebra,

• but rather a least solution in a different ordered domain from the
one provided by the standard semantics of recursive functions.

• Standard semantics: least solution in the flat Scott domain with
bottom element ⊥ representing nontermination

• Intended semantics: least solution in a different CPO, namely
(P(Z),⊆) with bottom element ∅.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 4 / 30

What is the problem?

• The function definition above will not halt in OCaml. . .

• even though it is clear what the answer should be;

• Note that this is not a corecursive definition: we are not asking for a
greatest solution or a unique solution in a final coalgebra,

• but rather a least solution in a different ordered domain from the
one provided by the standard semantics of recursive functions.

• Standard semantics: least solution in the flat Scott domain with
bottom element ⊥ representing nontermination

• Intended semantics: least solution in a different CPO, namely
(P(Z),⊆) with bottom element ∅.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 4 / 30

Motivating example c’d

We would like to use (almost) the same definition and get the intended
solution. . .

let set l = match l with

| N -> N

| C(h, t) -> (insert h (set t));;

We change it to:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t);;

The construct corec with the parameter iterator(N) specifies to the
compiler how to solve equations.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 5 / 30

Motivating example c’d

We would like to use (almost) the same definition and get the intended
solution. . .

let set l = match l with

| N -> N

| C(h, t) -> (insert h (set t));;

We change it to:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t);;

The construct corec with the parameter iterator(N) specifies to the
compiler how to solve equations.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 5 / 30

Motivating example c’d

For instance, for the infinite list alt:

•

1 •

2

the compiler will generate two equations:

set(x) = insert 1 (set(y))

set(y) = insert 2 (set(x))

then solve them using iterator (least fixed point) which will produce
the intended set {1, 2}.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 6 / 30

Motivating example c’d

let map f = match arg with

| N -> N

| C(h, t) -> C(f(h), map(f,t));;

We would like: map plusOne alt to produce the infinite list
2, 3, 2, 3, . . . :

•

1 •

2

7→ •

2 •

3

This is not a least fixed point computation anymore but rather a solution
in the final coalgebra.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 7 / 30

Another Example

Free variables of a λ-term

type term =

| Var of string x
| App of term * term (f e)
| Lam of string * term λx .e

let rec fv = function

| Var v -> {v}
| App(t1,t2) -> fv t1 ∪ fv t2

| Lam(x,t) -> (fv t) - {x}

let rec t = App(Var "x", App(Var "y", t))

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 8 / 30

Another Example

But what about infinitary λ-terms (λ-coterms)?

type term =

| Var of string x
| App of term * term (f e)
| Lam of string * term λx .e

let rec fv = function

| Var v -> {v}
| App(t1,t2) -> fv t1 ∪ fv t2

| Lam(x,t) -> (fv t) - {x}

let rec t = App(Var "x", App(Var "y", t))

•

x •

y

We would like: fv t = {x,y} (again LFP).

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 9 / 30

Substitution

Replace y by •

x x
in

•

x •

y

to get
•

x •

•

x x

.

The usual semantics would infinitely unfold the term on the left,
generating instead:

•

x •

• •

x x •

.

•

x x

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 10 / 30

Probabilistic Protocols

s

H t

T

1
2

1
2

1
2

1
2

PrH(s) = 1
2 + 1

8 + 1
32 + 1

128 + · · · = 2
3

PrH(t) = 1
4 + 1

16 + 1
64 + 1

256 + · · · = 1
3

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 11 / 30

Probabilistic Protocols

s

H t

T

1
2

1
2

1
2

1
2

PrH(s) = 1
2 + 1

2 · PrH(t)

PrH(t) = 1
2 · PrH(s)

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 12 / 30

The Von Neumann Trick

s

u t

TH

p 1− p

p1− p

1− pp

PrH(s) = p · PrH(u) + (1− p) · PrH(t)

PrH(u) = (1− p) + p · PrH(s)

PrH(t) = (1− p) · PrH(s)

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 13 / 30

The Von Neumann Trick

type state =

| H

| T

| Flip of float * state * state

let rec pr heads s = function

| H -> 1.

| T -> 0.

| Flip(p,u,v) ->

p *. (pr heads u) +. (1 -. p) *. (pr heads v)

let rec s = Flip(.345,u,t)

and u = Flip(.345,H,s)

and t = Flip(.345,T,s)

print p heads s

s

u t

TH

p 1− p

p1− p

1− pp

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 14 / 30

Theoretical Foundations

• Well-founded coalgebras [Taylor 99]

• Recursive coalgebras [Adámek, Lücke, Milius 07]

• Elgot algebras [Adámek, Milius, Velebil 06]

• Corecursive algebras [Capretta, Uustalu, Vene 09]

Ingredients:

• Functor F (usually polynomial or power set)

• domain: an F -coalgebra (C , γ)

• range: an F -algebra (A, α)

C A

FC FA

h

γ

Fh

α

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 15 / 30

Example: Factorial

let rec factorial = function

| 0 -> 1

| n -> n * factorial (n-1)

N N

1 + N× N 1 + N× N

h

γ

id1 + idN × h

α

FX = 1 + N× X γ(0) = ι0() α(ι0()) = 1

γ(n + 1) = ι1(n + 1, n) α(ι1(n,m)) = nm

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 16 / 30

Example: Fibonacci

let rec fibonacci = function

| 0 -> 0

| 1 -> 1

| n -> fibonacci (n-1) + fibonacci (n-2)

N N

1 + 1 + N× N 1 + 1 + N× N

h

γ

id1 + id1 + h × h

α

FX = 1 + 1 + X × X γ(0) = ι0() α(ι0()) = 0

γ(1) = ι1() α(ι1()) = 1

γ(n + 2) = ι2(n + 1, n) α(ι2(n,m)) = n + m

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 17 / 30

Example: Quicksort
[Adámek et al 07]

let rec partition pivot = function

| [] -> [], []

| hd :: tl ->

let leq, gt = partition pivot tl in

if hd <= pivot then hd :: leq, gt

else leq, hd :: gt

let rec quicksort = function

| [] -> []

| pivot :: tl ->

let leq, gt = partition pivot tl in

(quicksort leq) @ (pivot :: (quicksort gt))

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 18 / 30

Example: Quicksort
[Adámek et al 07]

A∗ A∗

1 + A∗ × A× A∗ 1 + A∗ × A× A∗

h

γ

id1 + h × idA × h

α

FX = 1 + X × A× X

γ([]) = ι0()

γ(pivot :: tl) = ι1(tl≤pivot, pivot, tl>pivot)

α(ι0()) = []

α(ι1(stl≤pivot, pivot, stl>pivot)) = stl≤pivot @ (pivot :: stl>pivot)

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 19 / 30

What about Non-Well-Founded Coalgebras?

The foundations existing so far were for unique solutions; we want
alternative solutions.

C A

FC FA

h

γ

Fh

α

• Even if (C , γ) is not well-founded, the diagram may still have a
canonical solution, provided (A, α) comes equipped with a method
for solving systems of equations

• The diagram specifies the system to be solved

• The variables are the elements of C and h is their interpretation in A

• The system is finite if C is

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 20 / 30

What about Non-Well-Founded Coalgebras?

The foundations existing so far were for unique solutions; we want
alternative solutions.

C A

FC FA

h

γ

Fh

α

• Even if (C , γ) is not well-founded, the diagram may still have a
canonical solution, provided (A, α) comes equipped with a method
for solving systems of equations

• The diagram specifies the system to be solved

• The variables are the elements of C and h is their interpretation in A

• The system is finite if C is

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 20 / 30

The general idea

The programmer specifies the equations as usual with an extra
parameter, like in:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t);;

The compiler generates equations and solves them using the extra
parameter.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 21 / 30

The general idea

The programmer specifies the equations as usual with an extra
parameter, like in:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t);;

The compiler generates equations and solves them using the extra
parameter.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 21 / 30

Free Variables of a λ-Coterm

The free variables of

•s

xu •t

y v

are {x , y}

fv(s) = fv(u) ∪ fv(t)

fv(t) = fv(v) ∪ fv(s)

fv(u) = {x}
fv(v) = {y}

The least solution in (P(Var),⊆) is {x , y}

Standard semantics: A ∪ ⊥ = ⊥, whereas here A ∪ ∅ = A

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 22 / 30

Free Variables of a λ-Coterm

The free variables of

•

x •

y

s

u t

v

are {x , y}

fv(s) = fv(u) ∪ fv(t)

fv(t) = fv(v) ∪ fv(s)

fv(u) = {x}
fv(v) = {y}

The least solution in (P(Var),⊆) is {x , y}

Standard semantics: A ∪ ⊥ = ⊥, whereas here A ∪ ∅ = A

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 23 / 30

Substitution

let corec[constructor] subst x t = match arg with

| Var v

-> if (v = x) then t else Var v

| App(t1, t2)

-> App(subst (x, t, t1), subst (x, t, t2));;

Replace y by z in

•

x •

y

to get

•

x •

z

We would again get 4 equations in 4 unknowns

In this case the solution is unique—the algebra is the final coalgebra

Standard semantics: not the unique solution in the final coalgebra C , but
the least solution in a Scott domain C⊥

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 24 / 30

Substitution

let corec[constructor] subst x t = match arg with

| Var v

-> if (v = x) then t else Var v

| App(t1, t2)

-> App(subst (x, t, t1), subst (x, t, t2));;

Replace y by z in

•

x •

y

to get

•

x •

z

We would again get 4 equations in 4 unknowns

In this case the solution is unique—the algebra is the final coalgebra

Standard semantics: not the unique solution in the final coalgebra C , but
the least solution in a Scott domain C⊥

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 24 / 30

Example: Probabilistic Protocols

s

H t

T

1
2

1
2

1
2

1
2

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1
2 · PrH(s)

• Can calculate expected running times, higher moments, outcome
functions similarly

• These are all least solutions in an appropriate ordered domain—in
the above example, ([0, 1],≤)

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 25 / 30

Probabilistic Protocols

s

H t

T

1
2

1
2

1
2

1
2

E(s) = 1
2 · 1 + 1

2 · (1 + E(t)) = 1 + 1
2E (t)

E(t) = 1
2 · 1 + 1

2 · (1 + E(s)) = 1 + 1
2E (s)

• Least solution in R+ ∪ {∞} is E(s) = E(t) = 2

• Also the unique bounded solution, because the fixpoint equation is
contractive

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 26 / 30

Other Non-Well-Founded Examples

• static analysis, abstract interpretation

• p-adic arithmetic

• automata constructions

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 27 / 30

Implementation

• We implemented corec constructor which takes a solver as a
parameter

• We implemented several general solvers: least fixed point, unique
solution in a final coalgebra, gaussian elimination, . . .

• Solvers are implemented directly in the interpreter, as transformers
from an abstract syntax tree to another abstract syntax tree.

• Future: to provide tools to manipulate the abstract syntax tree
allowing programmers to easily specify their solver.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 28 / 30

Implementation

• We implemented corec constructor which takes a solver as a
parameter

• We implemented several general solvers: least fixed point, unique
solution in a final coalgebra, gaussian elimination, . . .

• Solvers are implemented directly in the interpreter, as transformers
from an abstract syntax tree to another abstract syntax tree.

• Future: to provide tools to manipulate the abstract syntax tree
allowing programmers to easily specify their solver.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 28 / 30

Conclusions

• CoCaml offers new program constructs and functionalities to
implement functions on coinductive structures.

• Examples illustrate the need for new constructs

• New constructs enable allow definitions very much in the style of
standard recursive functions.

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 29 / 30

Thanks!

Alexandra Silva Nov. 30 2012 CoCaml: Programming with Coinductive Types 30 / 30

