The generalized powerset construction applications to semantics and concurrency

Alexandra Silva

alexandra@cs.ru.nl
http://www.cs.ru.nl/~alexandra/

Institute for Computing and Information Sciences Radboud University Nijmegen

MFPS 2014, Cornell University Ithaca, NY

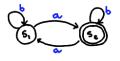
What is this talk about in one slide

- Coalgebraic techniques in automata and concurrency theory;
- One particular construction: the subset construction;
- · Generalizations and applications thereof.

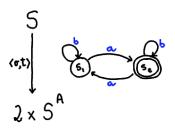
• Coalgebras – behaviour of dynamical systems.

- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.

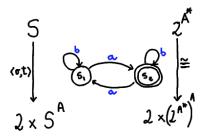
- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.



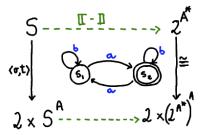
- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.

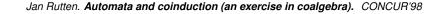


- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.

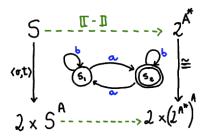


- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.





- Coalgebras behaviour of dynamical systems.
- Coalgebraic approach by example.



$$[\![s_1]\!] = \{ w \in \{a, b\}^* \mid |w|_a \text{ is odd} \}$$

$$S \to 2 \times S^A$$
 $S \to F(S)$

The power of

- a universe of behaviors (final coalgebra);
- a canonical notion of behavioral equivalence;

$$S \to 2 \times S^A$$
 $S \to F(S)$

The power of

- a universe of behaviors (final coalgebra);
- a canonical notion of behavioral equivalence;

deterministic automata infinite streams labelled transition systems

language equivalence pointwise equality branching bisimilarity

$$S \to 2 \times S^A$$
 $S \to F(S)$

The power of

- a universe of behaviors (final coalgebra);
- a canonical notion of behavioral equivalence;

deterministic automata infinite streams labelled transition systems language equivalence pointwise equality branching bisimilarity

- a specification language/logic;
- a sound and complete axiomatization thereof.

$$S \to 2 \times S^A$$
 $S \to F(S)$

The power of

- a universe of behaviors (final coalgebra);
- a canonical notion of behavioral equivalence;

deterministic automata infinite streams labelled transition systems

language equivalence pointwise equality branching bisimilarity

- a specification language/logic;
- a sound and complete axiomatization thereof.
- algorithms (wishful thinking: TCS-A meets TCS-B).

Universal coalgebra

Universal coalgebra

=

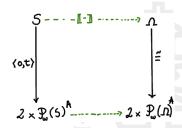
canonical notions/techniques based on the system type

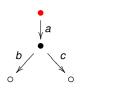
Universal coalgebra

Universal coalgebra

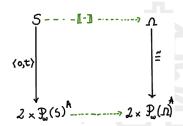
canonical notions/techniques based on the system type

But what happens when canonical is not so canonical?

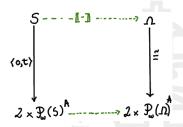




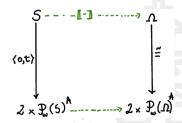
• $\llbracket \bullet \rrbracket \neq \llbracket \bullet \rrbracket$ (branching structure).



- $\llbracket \bullet \rrbracket \neq \llbracket \bullet \rrbracket$ (branching structure).
- However... $L(\bullet) = \{ab, ac\} = L(\bullet)$.



- $\llbracket \bullet \rrbracket \neq \llbracket \bullet \rrbracket$ (branching structure).
- However... $L(\bullet) = \{ab, ac\} = L(\bullet)$.



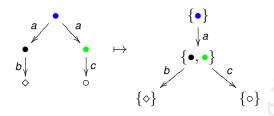
How to model language equivalence coalgebraically?

Classic construction

Turn the non-deterministic automaton into a deterministic one via the *powerset construction* and then apply usual semantics.

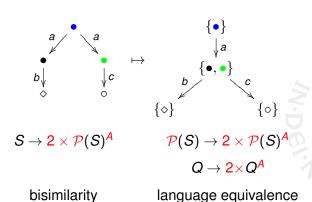
Classic construction

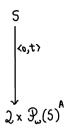
Turn the non-deterministic automaton into a deterministic one via the *powerset construction* and then apply usual semantics.

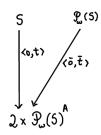


Classic construction

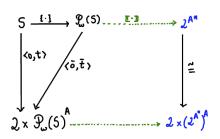
Turn the non-deterministic automaton into a deterministic one via the *powerset construction* and then apply usual semantics.





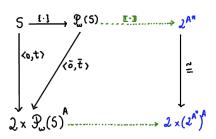


$$\overline{\mathcal{Q}} \times \mathcal{P}_{\omega}(5)^{r}$$
 $\overline{\mathcal{Q}}(Q) = \begin{cases} 1 & \exists_{q \in Q} o(q) = 1 \\ 0 & \text{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$



$$\mathfrak{J} \times \mathfrak{P}_{\omega}(5)^{n}$$

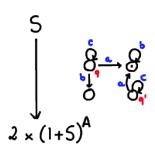
$$\overline{o}(Q) = \begin{cases} 1 & \exists_{q \in Q} o(q) = 1 \\ 0 & \text{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

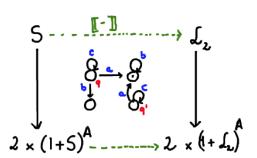


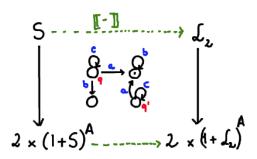
$$\overline{o}(Q) = egin{cases} 1 & \exists_{q \in Q} o(q) = 1 \ 0 & ext{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

How do we study NDA wrt language equivalence?

$$L_s = \llbracket \{s\} \rrbracket$$

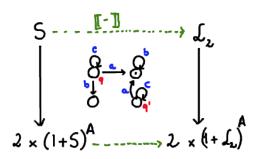




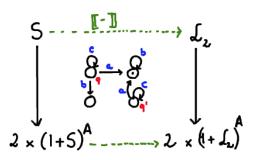


 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

$$\llbracket q \rrbracket = \langle c^*ab^*, b + c^* + c^*ab^* \rangle \neq \langle c^*ab^*, c^* + c^*ab^* \rangle = \llbracket q' \rrbracket$$



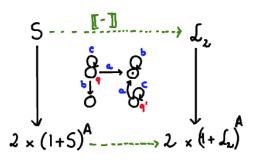
 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)



 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

$$\llbracket \, q \, \rrbracket = \langle c^*ab^*, b + c^* + c^*ab^* \rangle \neq \langle c^*ab^*, c^* + c^*ab^* \rangle = \llbracket \, q' \, \rrbracket$$
 but: $L_q = L_{q'} = c^*ab^*$

How do we study PA wrt (accepted) language equivalence?



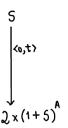
 \mathcal{L}_2 are pairs of languages $\langle V, W \rangle$ (<accepted words, domain>)

$$\llbracket q \rrbracket = \langle c^*ab^*, b + c^* + c^*ab^* \rangle \neq \langle c^*ab^*, c^* + c^*ab^* \rangle = \llbracket q' \rrbracket$$
 but: $L_q = L_{q'} = c^*ab^*$

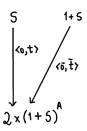
How do we study PA wrt (accepted) language equivalence?

Turn a partial automaton into a total deterministic one by adding a sink state and then apply usual semantics.

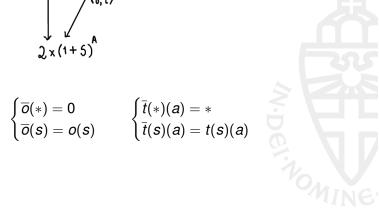
Example II: Totalizing (coalgebraically)



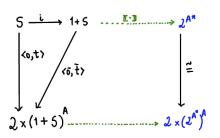
Example II: Totalizing (coalgebraically)



$$\begin{cases} \overline{o}(*) = 0 \\ \overline{o}(s) = o(s) \end{cases} \begin{cases} \overline{t}(*)(a) = * \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$$



Example II: Totalizing (coalgebraically)



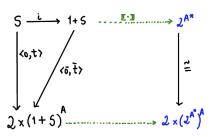
$$\frac{1}{2} \times (1+5)^{A}$$

$$\frac{1}{2} \times (1+5)^{A}$$

$$\frac{1}{2} \times (2^{A})^{A}$$

$$\frac{1}{2} \times$$

Example II: Totalizing (coalgebraically)

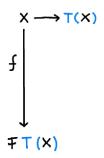


$$\begin{cases} \overline{o}(*) = 0 \\ \overline{o}(s) = o(s) \end{cases}$$
 $\begin{cases} \overline{t}(*)(a) = * \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$

How do we study PA wrt language equivalence?

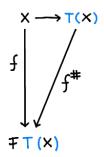
$$L_s = \llbracket i(s) \rrbracket$$

Chasing the pattern...



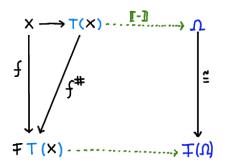
The state space is now *structured*: T monad (P, 1+,...).

Chasing the pattern...



The state space is now *structured*: T monad (\mathcal{P} , 1+, ...). Transform an FT-coalgebra (X,f) into an F-coalgebra (X).

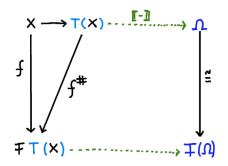
Chasing the pattern...



The state space is now *structured*: T monad (\mathcal{P} , 1+, . . .). Transform an FT-coalgebra (X,f) into an F-coalgebra (T(X), f^{\sharp}). If F has final coalgebra:

$$x_1 \approx_F^T x_2 \Leftrightarrow \llbracket \eta_X(x_1) \rrbracket = \llbracket \eta_X(x_2) \rrbracket$$

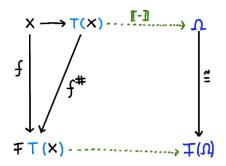
In a nutshell...



Ingredients:

- A monad T (intuitively: the structure to hide);
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f[‡] of f;

In a nutshell...



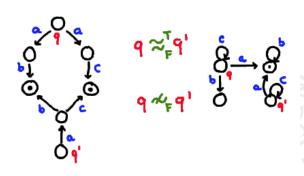
Ingredients:

- A monad T (intuitively: the structure to hide);
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f[‡] of f; We can require FT(X) to be a
 T-algebra; f[‡]: T(X) → F(T(X)) is an algebra map in EM(T).

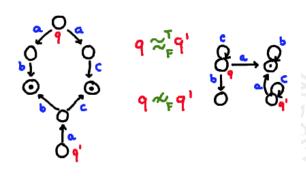
NFA $F(X) = 2 \times X^A$, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.

NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.



NFA
$$F(X) = 2 \times X^A$$
, $T = \mathcal{P}$, $2 \times \mathcal{P}(X)^A$ is a join-semilattice;
PA $F(X) = 2 \times X^A$, $T = 1 + -$, $2 \times (1 + X)^A$ is a pointed set.



What is the relation between \approx_F^T and \sim_F ?

Bisimilarity implies linear bisimilarity

Theorem

$$\sim_{F} \Rightarrow \approx_{F}^{T}$$

Bisimilarity implies linear bisimilarity

Theorem

$$\sim_{F} \Rightarrow \approx_{F}^{T}$$

The above theorem instantiates to well known facts:

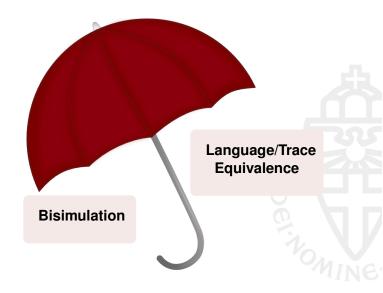
- for NDA (F(X) = 2 × X^A, T = P) that bisimilarity implies language equivalence;
- for PA (F(X) = 2 × X^A, T = 1 + -) that equivalences of pair of languages, consisting of defined paths and accepted words, implies equivalence of accepted words;
- for probabilistic automata ($F(X) = [0, 1] \times X^A$, $T = \mathcal{D}_{\omega}$) that probabilistic bisimilarity implies weighted language equivalence.

Examples, Examples, Examples,...

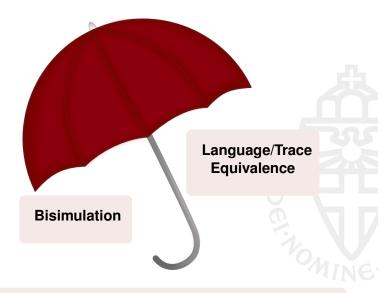
- Partial Mealy machines S → (B × (1+S))^A;
- Automata with exceptions $S \rightarrow 2 \times (E+S)^A$;
- Automata with side effects $S \to E^E \times ((E \times S)^E)^A$;
- Total subsequential transducers S → O* × (O*×S)A;
- Probabilistic automata $S \to [0,1] \times (\mathcal{D}_{\omega}(X))^A$;
- Weighted automata $S \to \mathbb{R} \times (\mathbb{R}^{X}_{\omega})^{A}$;
- •

A. Silva, F. Bonchi, M. Bonsangue and J. Rutten. *Generalizing the powerset construction, coalgebraically.* FSTTCS 2010

And so what?

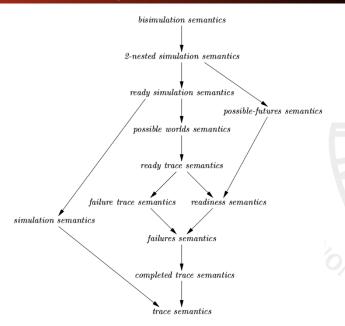


And so what?



Is this good enough?

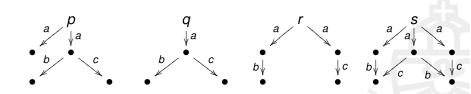
The van Glabbeek spectrum



And now what?

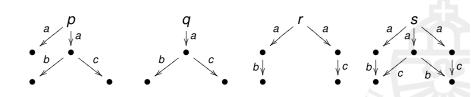
And now what?

Example



· All trace equivalent.

Example



- All trace equivalent.
- r and s failure equivalent.
- None bisimilar or ready equivalent.

Ready equivalence

$$\delta \colon X \to \mathcal{P}(X)^A$$

$$I(\varphi) = \{ a \in A \mid \varphi(a) \neq \emptyset \} \quad \varphi \colon A \to \mathcal{P}(X)$$

$$I(\delta(x))$$

all actions ready to be fired in x.

Ready equivalence

$$\delta \colon X \to \mathcal{P}(X)^A$$
 LTS
$$I(\varphi) = \{ a \in A \mid \varphi(a) \neq \emptyset \} \quad \varphi \colon A \to \mathcal{P}(X)$$
 all actions *ready* to be fired in x .

Ready pair of
$$x: (w, I(\delta(y))) \in A^* \times \mathcal{P}(A)$$
 s.t. $x \xrightarrow{w} y$.

Ready equivalence

$$\delta \colon X \to \mathcal{P}(X)^A$$
 LTS
$$I(\varphi) = \{ a \in A \mid \varphi(a) \neq \emptyset \} \quad \varphi \colon A \to \mathcal{P}(X)$$
 all actions *ready* to be fired in x .

Ready pair of
$$x$$
: $(w, I(\delta(y))) \in A^* \times \mathcal{P}(A)$ s.t. $x \xrightarrow{w} y$.

x and y are ready equivalent $\iff \mathcal{R}(x) = \mathcal{R}(y)$.

The coalgebraic method:

• Semantics: $\mathcal{R}(x)$: $\mathcal{P}(A^* \times \mathcal{P}A)$

The coalgebraic method:

- Semantics: $\mathcal{R}(x)$: $\mathcal{P}(A^* \times \mathcal{P}A)$
- Is $\mathcal{P}(A^* \times \mathcal{P}A)$ the carrier of a final coalgebra?

The coalgebraic method:

- Semantics: $\mathcal{R}(x)$: $\mathcal{P}(A^* \times \mathcal{P}A)$
- Is $\mathcal{P}(A^* \times \mathcal{P}A)$ the carrier of a final coalgebra?
- $\mathcal{P}(A^* \times \mathcal{P}A) \cong \mathcal{P}(\mathcal{P}A)^{A^*}$

The coalgebraic method:

- Semantics: $\mathcal{R}(x)$: $\mathcal{P}(A^* \times \mathcal{P}A)$
- Is $\mathcal{P}(A^* \times \mathcal{P}A)$ the carrier of a final coalgebra?
- $\mathcal{P}(A^* \times \mathcal{P}A) \cong \mathcal{P}(\mathcal{P}A)^{A^*}$

We need a coalgebra $Q \to \mathcal{PP}(A) \times Q^A$. But we have ... $\delta : X \to \mathcal{P}(X)^A$.

$$\delta \colon X \to \mathcal{P}(X)^A$$
 $\bar{o} \colon X \to \mathcal{P}(\mathcal{P}(A))$

$$\delta \colon X \to \mathcal{P}(X)^A$$
 $\bar{o} \colon X \to \mathcal{P}(\mathcal{P}(A))$ $\bar{o}(x) = \{I(delta(x))\}$

$$\delta \colon X \to \mathcal{P}(X)^{A} \qquad \bar{o} \colon X \to \mathcal{P}(\mathcal{P}(A))$$

$$\bar{o}(x) = \{I(delta(x))\}$$

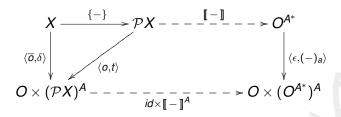
$$X \xrightarrow{\{-\}} \mathcal{P}X - - - - - \begin{bmatrix} - \\ - \end{bmatrix} - - > \mathcal{P}(\mathcal{P}(A))^{A^{*}}$$

$$\langle \bar{o}, \delta \rangle \qquad \qquad \langle \bar{o}, t \rangle \qquad \qquad \langle e, (-)_{a} \rangle$$

$$\mathcal{P}(\mathcal{P}(A)) \times (\mathcal{P}X)^{A} - - - - \frac{1}{id \times [-]^{A}} - - > \mathcal{P}(\mathcal{P}(A)) \times (\mathcal{P}(\mathcal{P}(A))^{A^{*}})^{A}$$

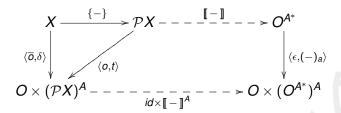
$$\llbracket \{x\} \rrbracket = \llbracket \{y\} \rrbracket \iff \mathcal{R}(x) = \mathcal{R}(y)$$

The van Glabbeek spectrum coalgebraically



• Varying O and \bar{o} yields other equivalences of the spectrum.

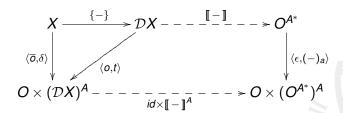
The van Glabbeek spectrum coalgebraically



- Varying O and \bar{o} yields other equivalences of the spectrum.
- Even more: must/may semantics.

Bonchi, Caltais, Pous, Silva. *Brzozowski's and Up-To Algorithms for Must Testing*. APLAS 2013.

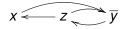
The probabilistic spectrum

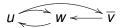


- LTS's $\delta \colon X \to \mathcal{P}(X)^A$ are replaced by reactive systems $\delta \colon X \to \mathcal{D}(X)^A$.
- All goes through, recovering results by Jou&Smolka 1990.

More applications of the powerset construction: up-to

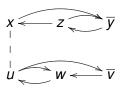
- Often used in process algebra, recent attention in automata theory (Bonchi&Pous POPL 2013).
- Idea: sound enhancements of the proof technique for desired equivalence.
- Simple example: DFA

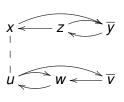


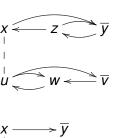


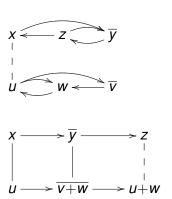
More applications of the powerset construction: up-to

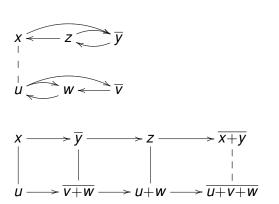
Use Hopcroft and Karp *on the fly*, through the powerset construction:

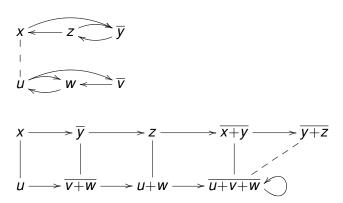


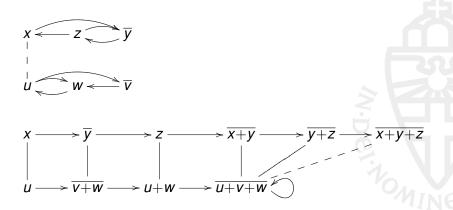


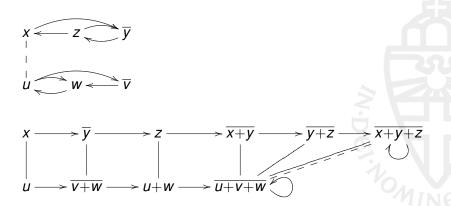


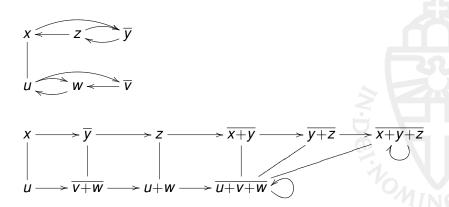




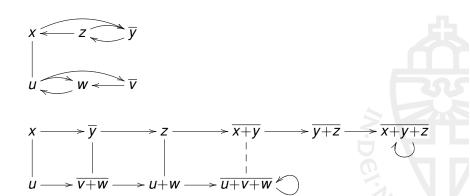




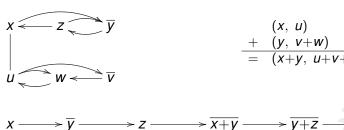




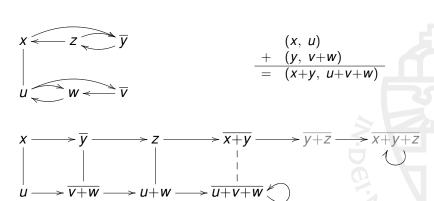
One can do better:



One can do better:



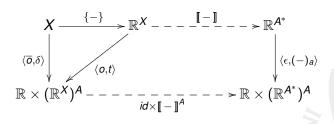
One can do better:



using bisimulations up to union

- up to union \mathcal{P} monad
- other enhancements: changes in the monad, determinization completes a smaller relation into a bisimulation (soundness).

More applications of the powerset construction: axiomatizations



- First sound and complete axiomatization of weighted language equivalence.
- Usual axioms for regular languages plus vector space (semi-module) axioms.

Bonsangue, Milius, Silva. Sound and Complete Axiomatizations of Coalgebraic Language Equivalence. ACM TOCL 2013.

Conclusions

- Lifted powerset construction to the more general framework of FT-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Interesting applications in language and concurrency theory;
- Opens the door to the study of linear equivalences for many types of automata.

Join for MFPS 2015!

Nijmegen, The Netherlands (Joint with CALCO 2015).