A decision procedure for bisimilarity of generalized regular expressions

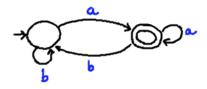
M. Bonsangue^{1,2} G. Caltais⁵ E. Goriac⁵ D. Lucanu⁴ J. Rutten^{1,3} A. Silva¹

¹Centrum Wiskunde & Informatica, The Netherlands
 ²LIACS - Leiden University, The Netherlands
 ³Radboud Universiteit Nijmegen, The Netherlands
 ⁴Faculty of Computer Science - Alexandru Ioan Cuza University, Romania
 ⁵School of Computer Science - Reykjavik University, Iceland

SBMF'10, November 2010

Deterministic automata (DA)

- Widely used model in Computer Science.
- Acceptors of languages

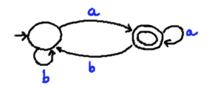


Regular expressions

- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, . . .

Deterministic automata (DA)

- Widely used model in Computer Science.
- Acceptors of languages



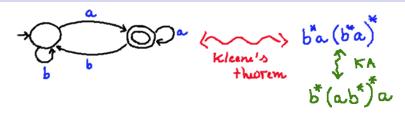
Regular expressions

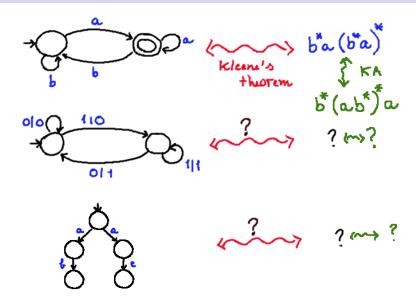
- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, . . .

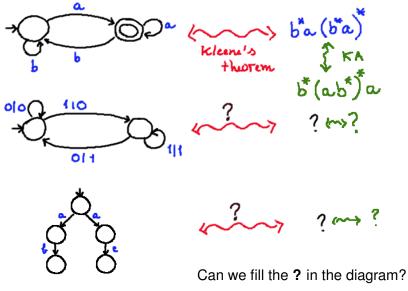
Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- **1** A = L(A), for some finite automaton A.
- 2 A = L(r), for some regular expression r.







In previous work ...

We presented:

- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

In previous work ...

We presented:

- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

In previous work ...

We presented:

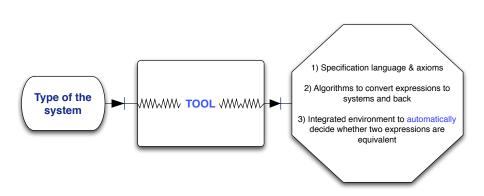
- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

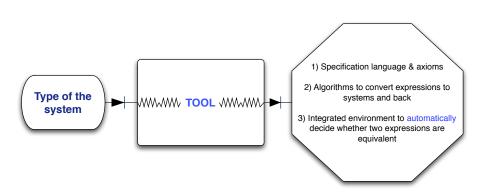
Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

The ultimate goal...



In this talk, we will be focusing on 1) and 3).

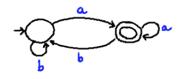
The ultimate goal...



In this talk, we will be focusing on 1) and 3).

Outline

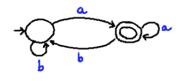
- Generalized regular expressions
- Equivalence of expressions
- Snapshot of the tool



$$(S,\delta:S\to 2\times S^A)$$

$$(S, \delta : S \to (B \times S)^A)$$

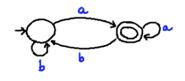
$$(S, \delta: S \to 1 + (\mathcal{P}S)^A)$$



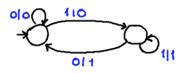
$$(S, \delta: S \to 2 \times S^A)$$

$$(S, \delta : S \to (B \times S)^A)$$

$$(S, \delta: S \to 1 + (\mathcal{P}S)^A)$$

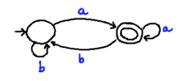


$$(S, \delta: S \rightarrow 2 \times S^A)$$

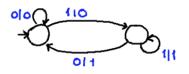


$$(S, \delta: S \rightarrow (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

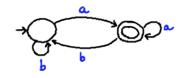


$$(S, \delta: S \rightarrow 2 \times S^A)$$

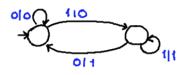


$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

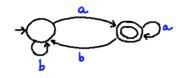


$$(S, \delta: S \rightarrow 2 \times S^{A})$$

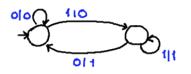


$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$



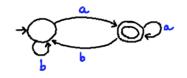
$$(S, \delta: S \rightarrow 2 \times S^{A})$$



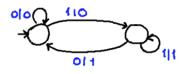
$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow \mathbf{1} + (\mathcal{P}S)^{\mathbf{A}})$$

 $(S, \delta : S \rightarrow GS)$



$$(S, \delta: S \rightarrow 2 \times S^A)$$



$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow \mathbf{1} + (\mathcal{P}S)^{\mathbf{A}})$$

 $(S, \delta: S \rightarrow \S S)$ \S -coalgebras

Coalgebras

- Generalizations of deterministic automata
- Set of states S and a transition function t : S → GS where G encodes the type of the system:

$$\mathfrak{G}::= Id \mid B \mid \mathfrak{G} \times \mathfrak{G} \mid \mathfrak{G} + \mathfrak{G} \mid \mathfrak{G}^{A} \mid \mathfrak{P}\mathfrak{G}$$

P finite

Examples

•
$$9 = 2 \times Id^A$$

•
$$G = (B \times Id)^A$$

•
$$9 = 1 + (PId)^A$$

Deterministic automata

Mealy machines

Mealy machines

LTS (with explicit termination)

Coalgebras

- Generalizations of deterministic automata
- Set of states S and a transition function t : S → GS where G encodes the type of the system:

$$\mathfrak{G}::= Id \mid B \mid \mathfrak{G} \times \mathfrak{G} \mid \mathfrak{G} + \mathfrak{G} \mid \mathfrak{G}^{A} \mid \mathfrak{P}\mathfrak{G}$$

 \mathcal{P} finite

Examples

•
$$9 = 2 \times Id^A$$

•
$$\mathfrak{G} = (B \times Id)^A$$

•
$$\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$$

...

Deterministic automata

Mealy machines

LTS (with explicit termination)

The power of 9

The functor 9 determines:

- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions

The power of 9

The functor 9 determines:

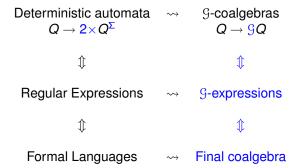
- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions

The power of 9

The functor 9 determines:

- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions
- 1 + 2 are standard universal coalgebra; 1 + 1 are [BRS10]

In a nutshell — beyond deterministic automata



9-expressions

$$E ::= \underline{\emptyset} \mid \epsilon \mid E \cdot E \mid E + E \mid E^*$$

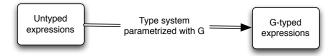
$$E_{\mathfrak{G}}$$
 ::= ?

9-expressions

$$E \quad ::= \quad \underline{\emptyset} \mid \epsilon \mid E \cdot E \mid E + E \mid E^*$$

$E_{\mathfrak{G}}$::= ?

How do we define $E_{\mathfrak{G}}$?



Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{X}.\gamma}_{\mathfrak{G}} \mid$$

Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{X}. \gamma}_{\mathfrak{S}} \mid \underbrace{\qquad \qquad }_{\times}$$

Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{\frac{1}{2} \mid \underbrace{0}_{2} \mid \underbrace{a(\varepsilon)}_{Id^{A}}}_{\times}$$

Deterministic automata expressions – $\mathcal{G} = \mathbf{2} \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{S} \mid \underbrace{\frac{1}{2} \mid \underbrace{0}_{2} \mid \underbrace{a(\varepsilon)}_{Id^{A}}}_{\times}$$

LTS expressions – $\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$

$$\varepsilon$$
 ::= $\underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{x}.\gamma$

Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{\frac{1}{2} \mid \underbrace{0}_{2} \mid \underbrace{a(\varepsilon)}_{Id^{A}}}_{\times}$$

LTS expressions – $\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$

$$\varepsilon ::= \underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{X}.\gamma \mid \underbrace{\checkmark}_{1} \mid \underbrace{\partial}_{(\mathfrak{P}Id)^{A}} \mid \underbrace{\mathbf{a}.\varepsilon}_{(\mathfrak{P}Id)^{A}}$$

The set of G-expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

 $\delta g \dots$

- ... provides an operational semantics for the set of expressions
- ... defines the dynamics of the system
- ... is used for observing the behaviour of the system

The set of \mathcal{G} -expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

- $\delta g \dots$
 - ...provides an operational semantics for the set of expressions
 - ... defines the dynamics of the system
 - ...is used for observing the behaviour of the system

The set of G-expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

 $\delta g \dots$

- ... provides an operational semantics for the set of expressions
- ... defines the dynamics of the system
- ...is used for observing the behaviour of the system

The set of \mathcal{G} -expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

 $\delta g \dots$

- ...provides an operational semantics for the set of expressions
- ...defines the dynamics of the system
- ...is used for observing the behaviour of the system

The goal: proving equivalence

- Automatically proving equivalence (bisimilarity) of expressions;
- Tool: Circ
- Meta-language implemented in Maude
- Input: Algebraic specification + coalgebraic structure (dynamics)
- Engine: circular coinduction constructing bisimulation
- Output: Yes / No / ?

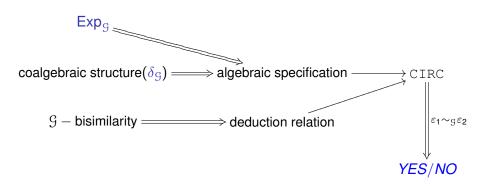
The goal: proving equivalence

- Automatically proving equivalence (bisimilarity) of expressions;
- Tool: Circ
- Meta-language implemented in Maude
- Input: Algebraic specification + coalgebraic structure (dynamics)
- Engine: circular coinduction constructing bisimulation
- Output: Yes / No / ?

The goal: proving equivalence

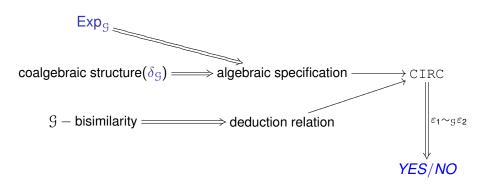
- Automatically proving equivalence (bisimilarity) of expressions;
- Tool: Circ
- Meta-language implemented in Maude
- Input: Algebraic specification + coalgebraic structure (dynamics)
- Engine: circular coinduction constructing bisimulation
- Output: Yes / No / ?

Our challenge



How to guarantee that the prover always says YES/NO?

Our challenge

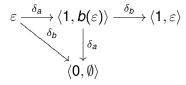


How to guarantee that the prover always says YES/NO?

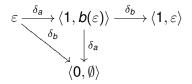
$$\varepsilon = \mu x.a(b(x)) \oplus 1$$

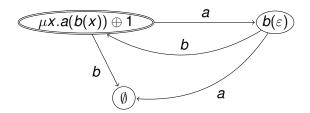
$$\varepsilon \xrightarrow{\delta_a} \langle \mathbf{1}, \mathbf{b}(\varepsilon) \rangle \xrightarrow{\delta_b} \langle \mathbf{1}, \varepsilon \rangle$$

$$\varepsilon = \mu x.a(b(x)) \oplus 1$$



$$\varepsilon = \mu x.a(b(x)) \oplus 1$$





But ...

$$\varepsilon = \mu x.a(x \oplus x)$$

But ...

$$\varepsilon = \mu x.a(x \oplus x)$$

$$\varepsilon \overset{\delta}{\longmapsto} \langle \mathbf{0}, \varepsilon \!\oplus\! \varepsilon \rangle$$

But . . .

$$\varepsilon = \mu x.a(x \oplus x)$$

$$\varepsilon \stackrel{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

But ...

$$\varepsilon = \mu x.a(x \oplus x)$$

$$\varepsilon \stackrel{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

We need ACI!

But ...

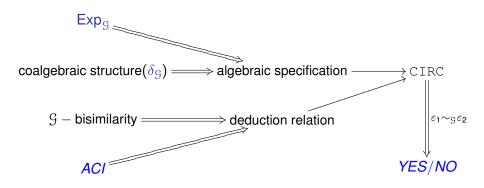
$$\varepsilon = \mu x.a(x \oplus x)$$

$$\varepsilon \overset{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \overset{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \overset{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

We need ACI!

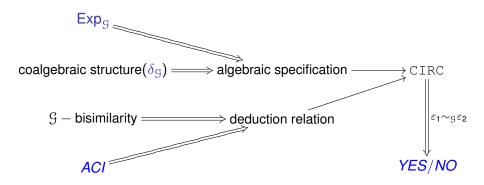
$$(\mu x.a(x \oplus x))$$
 a

A decision procedure for bisimilarity



- Adding equations is possible because Circ is an extension of
- With ACI, the bisimulation game is decidable!

A decision procedure for bisimilarity



- Adding equations is possible because Circ is an extension of Maude
- With ACI, the bisimulation game is decidable!

Algebra meets coalgebra

Example

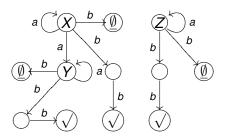
$$\begin{array}{lll} \varepsilon_{\mathcal{X}} & = & \mu x.a.x \oplus b.\underline{\emptyset} \oplus a.(\mu y.a.y \oplus b.\underline{\emptyset} \oplus b.b.\sqrt{)} \oplus b.b.\sqrt{} \\ \varepsilon_{\mathcal{Z}} & = & \mu z.a.z \oplus b.\underline{\emptyset} \oplus b.b.\sqrt{} \end{array}$$



Question Are ε_X and ε_Z equivalent?

Example

$$\begin{array}{lll} \varepsilon_{\mathcal{X}} & = & \mu x.a.x \oplus b.\underline{\emptyset} \oplus a.(\mu y.a.y \oplus b.\underline{\emptyset} \oplus b.b.\sqrt{)} \oplus b.b.\sqrt{} \\ \varepsilon_{\mathcal{Z}} & = & \mu z.a.z \oplus b.\underline{\emptyset} \oplus b.b.\sqrt{} \end{array}$$



Question Are ε_X and ε_Z equivalent?

Maude> in protofunctorizer.maude

Proof succeeded.

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
```

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
```

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
```

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2 .)
```

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2.)
(generate coalgebra .)
```

$$\mathfrak{G} = B + \mathfrak{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2.)
(generate coalgebra .)
296 lines of CIRC specification!
```

$$\mathfrak{G} = \mathbf{B} + \mathfrak{P}(\mathbf{Id})^{\mathbf{A}}, \mathbf{A} = \{\mathbf{a}, \mathbf{b}\}, \mathbf{B} = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2.)
(generate coalgebra .)
296 lines of CIRC specification!
Maude> in circ.maude Xand7.maude
```

$$\mathfrak{G} = \mathbf{B} + \mathfrak{P}(\mathbf{Id})^{\mathbf{A}}, \mathbf{A} = \{\mathbf{a}, \mathbf{b}\}, \mathbf{B} = \{\sqrt{3}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2.)
(generate coalgebra .)
296 lines of CIRC specification!
Maude> in circ.maude Xand7.maude
(coinduction .)
```

$$g = B + \mathcal{P}(Id)^A, A = \{a, b\}, B = \{\sqrt{a}\}$$


```
Maude> in protofunctorizer.maude
(alph A is a b endalph)
(alph B is tick endalph)
(functor B + P(Id)^A.)
(E1 = mu X. ...)
(E2 = mu Z. ...)
(set goal E1 = E2 .)
(generate coalgebra .)
296 lines of CIRC specification!
Maude> in circ.maude Xand7.maude
(coinduction .)
```

Proof succeeded.

$$\mathfrak{G} = \mathbf{B} + \mathfrak{P}(\mathbf{Id})^{\mathbf{A}}, \mathbf{A} = \{\mathbf{a}, \mathbf{b}\}, \mathbf{B} = \{\sqrt{3}\}$$

Conclusions and Future work

Conclusions

- Generic framework to uniformly derive language and axioms for a large class of systems
- Generalization of Kleene theorem and Kleene algebra, parametric on the functor.
- Automation in Circ: decision procedure for equivalence of expressions.

Future work

- Making the tool more user friendly;
- Extending the class of systems to include quantitative systems (probabilistic automata, etc)
- Apply it to a serious case study (circuit design, compiler optimization, ...)

Conclusions and Future work

Conclusions

- Generic framework to uniformly derive language and axioms for a large class of systems
- Generalization of Kleene theorem and Kleene algebra, parametric on the functor.
- Automation in Circ: decision procedure for equivalence of expressions.

Future work

- Making the tool more user friendly;
- Extending the class of systems to include quantitative systems (probabilistic automata, etc)
- Apply it to a serious case study (circuit design, compiler optimization, ...)

Thank you!

- for more details see:
 - "Non-deterministic Kleene coalgebras"
 A.Silva, M. Bonsangue, J. Rutten
 - "Circular coinduction A proof theoretical foundation"
 G. Roşu, D. Lucanu
- QUESTIONS?