Coalgebras for Concurrency

- or -

A bridge between automata and concurrency theory.

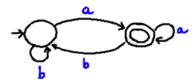
Alexandra Silva

Radboud University Nijmegen Centrum Wiskunde & Informatica

> September 6, 2014 TRENDS 2014 Rome, Italy

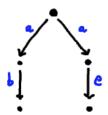
Context

- Automata are basic structures in Computer Science.
- Language equivalence: well-studied, several algorithms.
- Renewed attention (POPL'11, '13, '14).



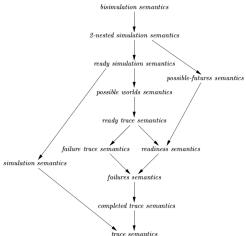
Context

- Concurrency: a spectrum of equivalences.
- Checking usually done by reducing to bisimilarity.



An alternative road

- Many efficient algorithms for equivalence of automata.
- Applications in concurrency?



From automata to concurrency

Various spectrum equivalences

Language equivalence of a *transformed* system

Automaton with outputs and structured state space (Moore automata).

Bonsangue, Bonchi, Caltais, Rutten, S. MFPS 12

From automata to concurrency

- · Generalization of existing algorithms to Moore automata.
- Brzozowski's and Hopcroft/Karp algorithms for van Glabbeek's spectrum.
- Cleaveland and Hennessy's acceptance graphs for must/may testing = Moore automata.
- Brzozowski's and Hopcroft/Karp algorithms algorithm for must/may testing.

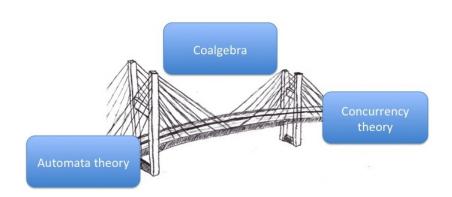
Bonchi, Caltais, Pous, Silva. APLAS 2013

From automata to concurrency

- Generalization of existing algorithms to Moore automata.
- Brzozowski's and Hopcroft/Karp algorithms for van Glabbeek's spectrum.
- Cleaveland and Hennessy's acceptance graphs for must/may testing = Moore automata.
- Brzozowski's and Hopcroft/Karp algorithms algorithm for must/may testing.

Bonchi, Caltais, Pous, Silva. APLAS 2013

The approach



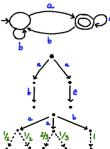
Roadmap

- 1. Brief introduction to coalgebra.
- Two algorithms for language equivalence and generalizations.
- 3. Trends and opportunities.

Specify and reason about systems.

Specify and reason about systems.

state-machines e.g. DFA, LTS, PA, ...



Specify

and

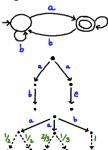
reason

about **systems**.

Syntax RE, CCS, ...

$$a.b.0 + a.c.0$$

state-machines e.g. DFA, LTS, PA, ...



Specify

and

reason

about systems.

Syntax RE, CCS, ...

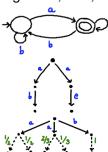
Axiomatization KA....

b"a(b"a)"

$$a.b.0 + a.c.0$$

$$P+0 = P$$

state-machines e.g. DFA, LTS, PA, ...



Specify

and

reason

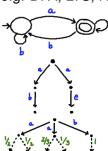
about systems.

Syntax RE, CCS, ... Axiomatization KA....

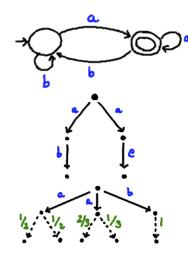
b"a(b"a)"

$$P + 0 = P$$

state-machines e.g. DFA, LTS, PA, ...



Can we do all of this uniformly in a single framework?

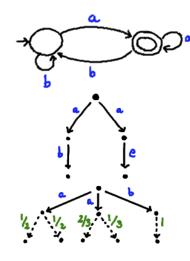


$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \rightarrow \mathcal{PD}_{\omega}(S)^{A})$$

$$(S, t: S \rightarrow TS)$$
 T-coalgebras

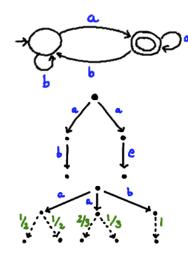


$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \to \mathcal{PD}_{\omega}(S)^A)$$

 $(S, t: S \rightarrow TS)$ T-coalgebras

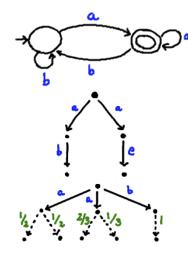


$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \rightarrow \mathcal{PD}_{\omega}(S)^{A})$$

$$(S, t: S \rightarrow TS)$$
 T-coalgebras

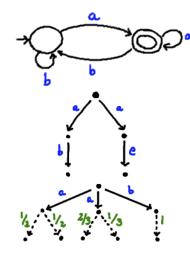


$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \rightarrow \mathcal{PD}_{\omega}(S)^{A})$$

$$(S, t: S \rightarrow TS)$$
 T-coalgebras



$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \to \mathcal{PD}_{\omega}(S)^A)$$

$$(S, t: S \rightarrow TS)$$
 T-coalgebras

$$(S, t: S \rightarrow TS)$$

The functor T determines

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$
- 3. set of expressions describing finite systems
- 4. axioms to prove bisimulation equivalence of expressions

$$(S, t: S \rightarrow TS)$$

The functor *T* determines:

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$
- 3. set of expressions describing finite systems
- 4. axioms to prove bisimulation equivalence of expressions

$$(S, t: S \rightarrow TS)$$

The functor *T* determines:

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$
- 3. set of expressions describing finite systems
- 4. axioms to prove bisimulation equivalence of expressions

$$(S, t: S \rightarrow TS)$$

The functor *T* determines:

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$
- 3. set of expressions describing finite systems
- 4. axioms to prove bisimulation equivalence of expressions
- 1 + 2 are classic coalgebra; 3 + 4 are recent work.

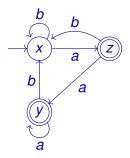
Current state of affairs

- Coalgebra/coinduction semantic side of the world: operational/denotational semantics, logics, . . .
- Key role in current development of functional languages, type theory, . . .
- This talk: uniform derivation of algorithms and applications to concurrency.

Brzozowski's algorithm

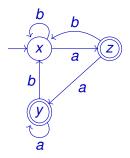
Brzozowski's algorithm, (co)algebraically - Kozen's festschrift 2012

Brzozowski's algorithm (by example)

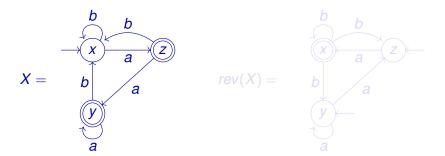


- initial state: x final states: y and z
- $\bullet L(x) = \{a,b\}^* a$
- *X* is reachable but not minimal: $L(y) = \varepsilon + \{a, b\}^* a = L(z)$

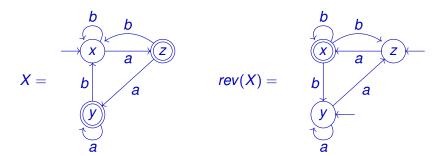
Brzozowski's algorithm (by example)



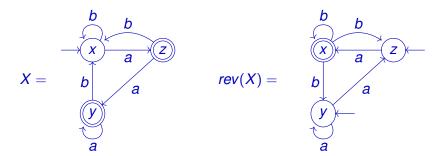
- initial state: x final states: y and z
- $\bullet L(x) = \{a,b\}^* a$
- X is reachable but not minimal: $L(y) = \varepsilon + \{a, b\}^* a = L(z)$



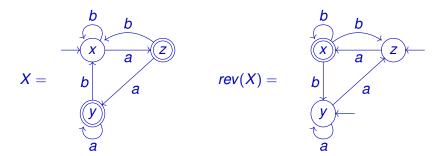
- transitions are reversed
- rev(X) is non-deterministic



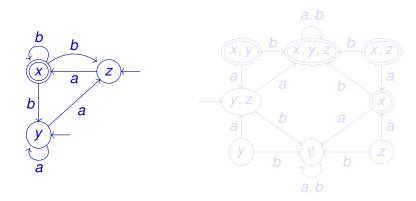
- transitions are reversed
- rev(X) is non-deterministic



- transitions are reversed
- initial states ⇔ final states
- rev(X) is non-deterministic

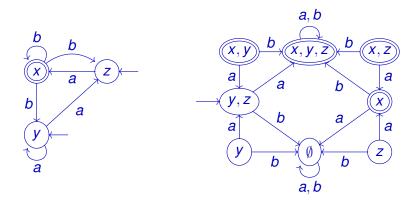


- transitions are reversed
- initial states ⇔ final states
- rev(X) is non-deterministic

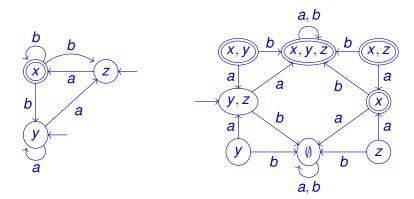


- new state space: $2^X = \{V \mid V \subseteq \{x, y, z\}\}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$

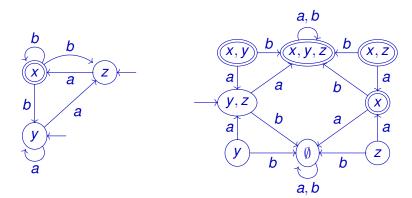
•
$$V \xrightarrow{a} W$$
 $W = \{ w \mid v \xrightarrow{a} w, v \in V \}$



- new state space: $2^X = \{ V \mid V \subseteq \{x, y, z\} \}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$



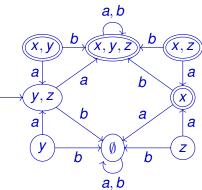
- new state space: $2^X = \{V \mid V \subseteq \{x, y, z\}\}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$



- new state space: $2^X = \{ V \mid V \subseteq \{x, y, z\} \}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$

•
$$V \xrightarrow{a} W$$
 $W = \{ w \mid v \xrightarrow{a} w, v \in V \}$

The automaton det(rev(X)) . . .

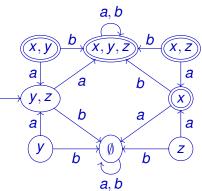


• . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

. . . and is observable!

The automaton det(rev(X)) . . .

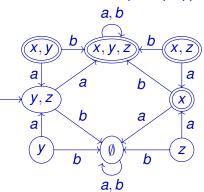


• . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

• . . . and is observable!

The automaton det(rev(X)) . . .



• . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

. . . and is observable!

Brzozowski's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

```
then: det(rev(X)) is minimal and
```

$$L(det(rev(X))) = reverse(L(X))$$

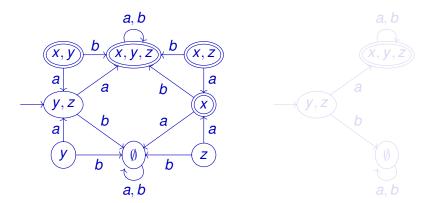
Brzozowski's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

then: det(rev(X)) is minimal and

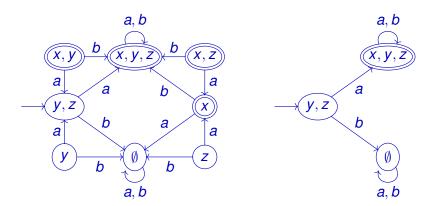
$$L(det(rev(X))) = reverse(L(X))$$

Taking the reachable part of det(rev(X))



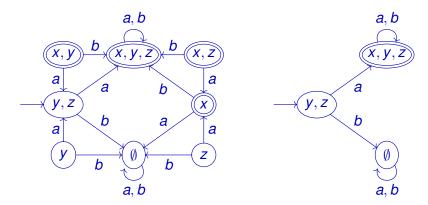
reach(det(rev(X)))

Taking the reachable part of det(rev(X))

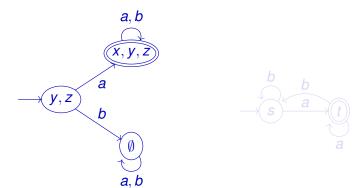


reach(det(rev(X)))

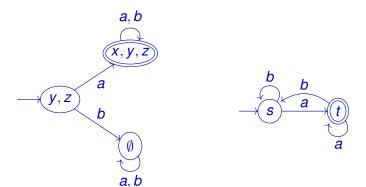
Taking the reachable part of det(rev(X))



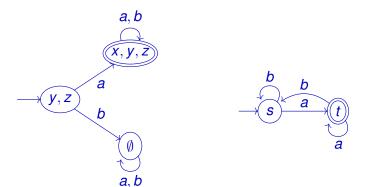
• reach(det(rev(X))) is reachable (by construction)



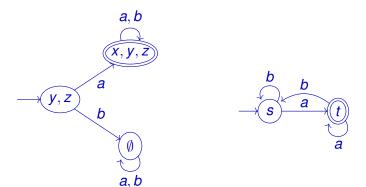
- . . . gives us reach(det(rev(reach(det(rev(X))))))
- which is (reachable and) minimal and accepts {a, b}* a.



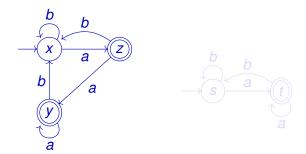
- . . . gives us reach(det(rev(reach(det(rev(X))))))
- which is (reachable and) minimal and accepts {a, b}* a.



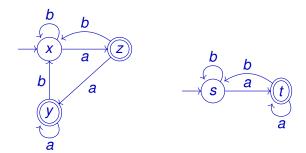
- . . . gives us reach(det(rev(reach(det(rev(X))))))
- which is (reachable and) minimal and accepts {a, b}* a.



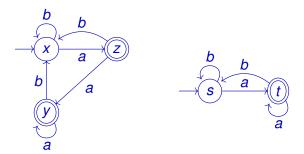
- . . . gives us reach(det(rev(reach(det(rev(X))))))
- which is (reachable and) minimal and accepts {a, b}* a.



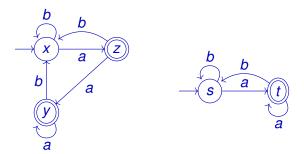
- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a
- . . . and is minimal!!



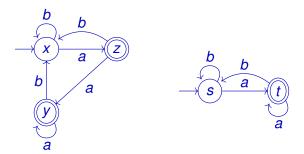
- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a
- . . . and is minimal!!



- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a,b}* a
- . . . and is minimal!!



- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a
- . . . and is minimal!!



- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a
- . . . and is minimal!!

Beyond deterministic automata

Brzozowski (X)

- (1) reverse and determinize;
- (2) take the reachable part;
- (3) reverse and determinize;
- (4) take the reachable part.

Checking language equivalence

Minimize both automata and check for isomorphism.

Crucial observation for generalizations

Reverse and determinize is more general than at first sight!

Beyond deterministic automata

Brzozowski (X)

- (1) reverse and determinize;
- (2) take the reachable part;
- (3) reverse and determinize;
- (4) take the reachable part.

Checking language equivalence

Minimize both automata and check for isomorphism.

Crucial observation for generalizations
Reverse and determinize is more general than at first sight

Beyond deterministic automata

Brzozowski (X)

- (1) reverse and determinize;
- (2) take the reachable part;
- (3) reverse and determinize;
- (4) take the reachable part.

Checking language equivalence

Minimize both automata and check for isomorphism.

Crucial observation for generalizations

Reverse and determinize is more general than at first sight!

Reverse and determinize

where $2^V = \{S \mid S \subseteq V\}$ and, for all $S \subseteq W$,

$$2^{g}(S) = g^{-1}(S) \quad (= \{ v \in V \mid g(v) \in S \})$$

- Works for general $B^{(-)}$ and
- For structured sets (change in category).

Reverse and determinize

$$2^{(-)}: \qquad g \downarrow \qquad \mapsto \qquad 2^V \downarrow 2^g \downarrow 2^W$$

where
$$2^V = \{S \mid S \subseteq V\}$$
 and, for all $S \subseteq W$,

$$2^{g}(S) = g^{-1}(S) \quad (= \{v \in V \mid g(v) \in S\})$$

- This construction is *contravariant* and
- Works for general $B^{(-)}$ and
- For structured sets (change in category).

Reverse and determinize

where $2^V = \{S \mid S \subseteq V\}$ and, for all $S \subseteq W$,

$$2^{g}(S) = g^{-1}(S) \quad (= \{ v \in V \mid g(v) \in S \})$$

- This construction is contravariant and
- Works for general $B^{(-)}$ and
- For structured sets (change in category).

Brzozowski's algorithm generalized

Deterministic automata

$$X \to B \times X^A$$

 $\mathcal{P}(A^*)$

Brzozowski's algorithm generalized

Deterministic automata
$$X \to B \times X^A$$
 $\mathcal{P}(A^*)$

Moore automata $X \to B \times X^A$ B^{A^*}

Linear weighted automata $V \to \mathbb{R} \times V^A$ \mathbb{R}^{A^*}

Guarded strings automata $\mathcal{B} \to \mathbb{B} \times \mathcal{B}^{\mathbb{B} \times A}$ $\mathcal{P}((\mathbb{A} \mathsf{t} \cdot A)^* \cdot \mathbb{A} \mathsf{t})$
 \vdots

Correctness and generalizations in [BBRS'12, BBHPRS'13].

Brzozowski's algorithm in concurrency

Cleaveland and Hennessy's acceptance graphs for must/may testing = Moore automata.

Several equivalences of the spectrum (failure, ready-trace, ...) = regular behaviors Moore automata.

See APLAS paper for details.

Brzozowski's algorithm in concurrency

Cleaveland and Hennessy's acceptance graphs for must/may testing = Moore automata.

Several equivalences of the spectrum (failure, ready-trace, ...) = regular behaviors Moore automata.

See APLAS paper for details.

Intermezzo

 Brzozowski's algorithm can be uniformly generalized based on the type functor.

Intermezzo

- Brzozowski's algorithm can be uniformly generalized based on the type functor.
- Second example: up-to algorithm (HKC).

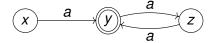
Up-to techniques

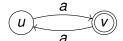
Tools and proof techniques for systems equivalence

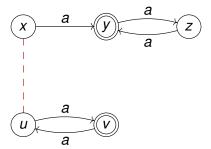
Methodology:

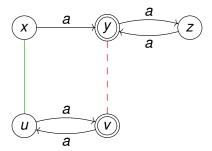
- 1. characterise coinductively a given notion of equivalence
- 2. improve the associated proof method

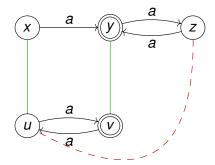
up-to techniques

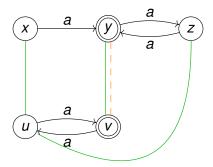


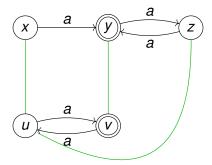






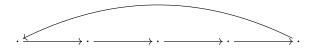




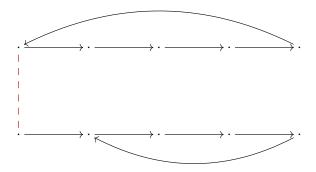


Complexity

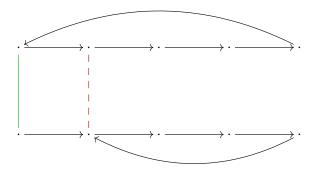
The previous algorithm is quadratic



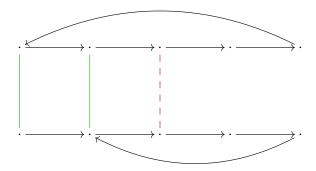
The previous algorithm is quadratic



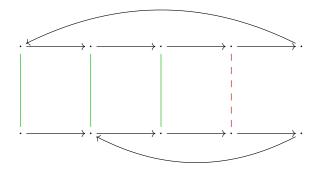
The previous algorithm is quadratic



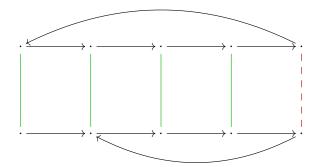
The previous algorithm is quadratic



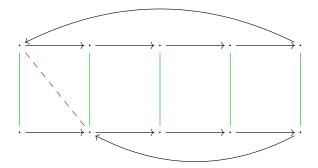
The previous algorithm is quadratic



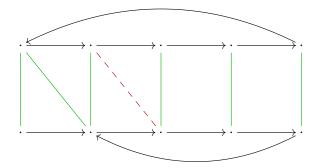
The previous algorithm is quadratic



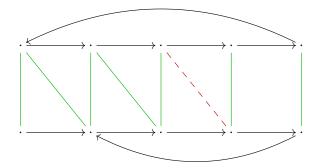
The previous algorithm is quadratic



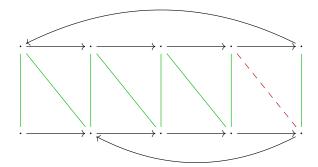
The previous algorithm is quadratic



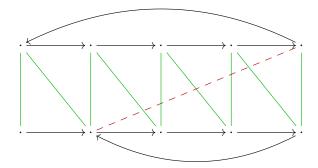
The previous algorithm is quadratic



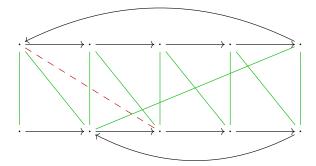
The previous algorithm is quadratic



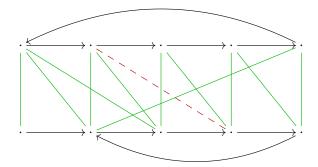
The previous algorithm is quadratic



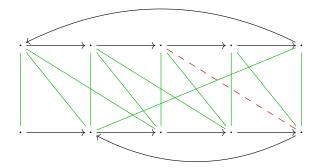
The previous algorithm is quadratic



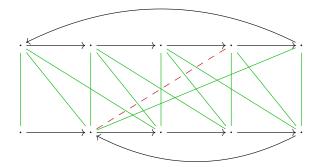
The previous algorithm is quadratic



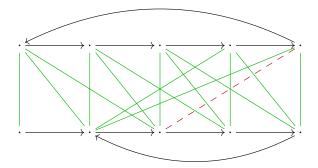
The previous algorithm is quadratic



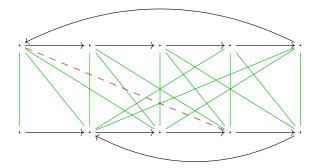
The previous algorithm is quadratic



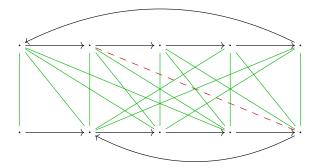
The previous algorithm is quadratic



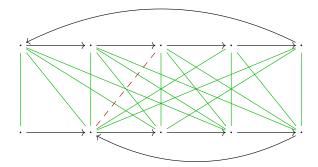
The previous algorithm is quadratic



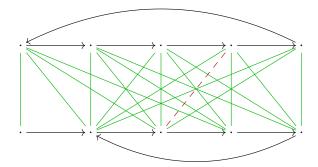
The previous algorithm is quadratic



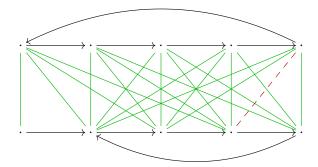
The previous algorithm is quadratic



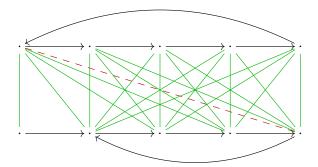
The previous algorithm is quadratic



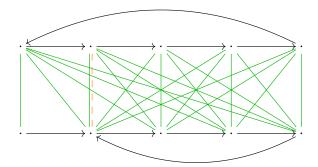
The previous algorithm is quadratic



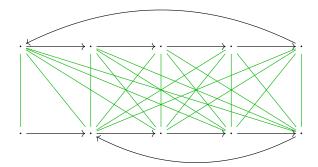
The previous algorithm is quadratic



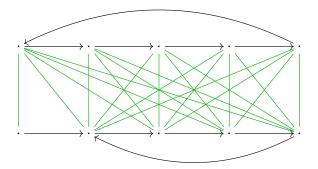
The previous algorithm is quadratic



The previous algorithm is quadratic



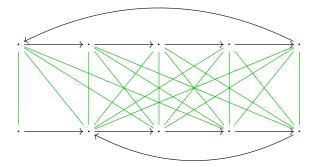
One can stop much earlier



21 pairs

Tarjan '75]

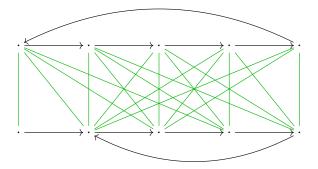
One can stop much earlier



21 20 pairs

[Tarjan '75]

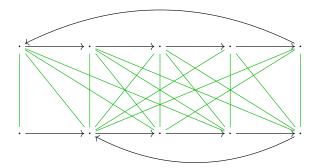
One can stop much earlier



21 19 pairs

[Tarjan '75]

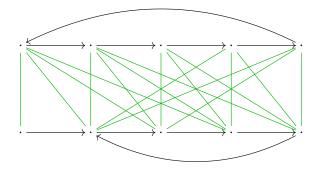
One can stop much earlier



21 18 pairs

[Tarjan '75]

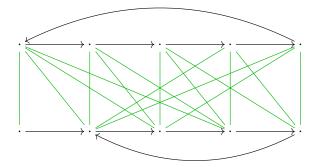
One can stop much earlier



21 17 pairs

[Tarjan '75]

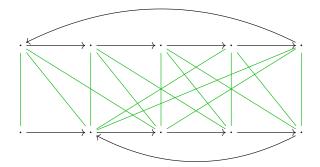
One can stop much earlier



21 16 pairs

[Tarjan '75]

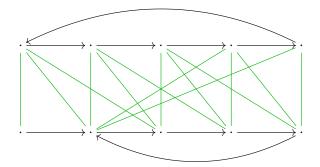
One can stop much earlier



21 15 pairs

[Tarjan '75]

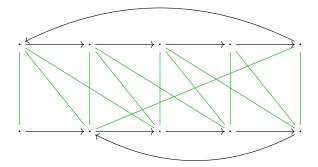
One can stop much earlier



21 14 pairs

[Tarjan '75]

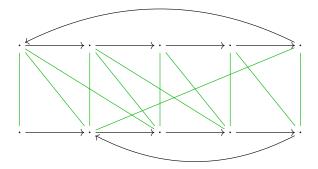
One can stop much earlier



21 13 pairs

[Tarjan '75]

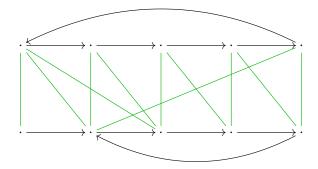
One can stop much earlier



21 12 pairs

[Tarjan '75]

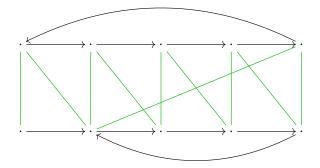
One can stop much earlier



21 11 pairs

[Tarjan '75]

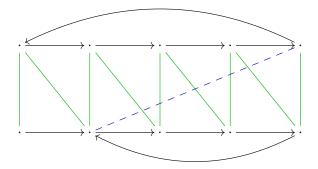
One can stop much earlier



21 10 pairs

[Tarjan '75]

One can stop much earlier

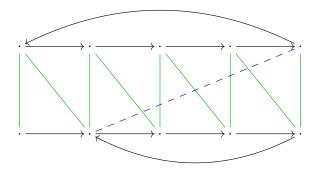


21 9 pairs

[Tarjan '75]

First improvement

One can stop much earlier



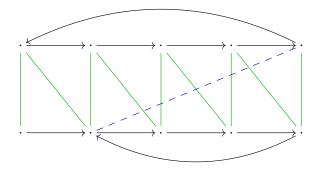
[Hopcroft and Karp '71]

Complexity: almost linear

Tarjan '75]

First improvement

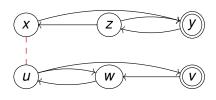
One can stop much earlier



Complexity: almost linear

[Hopcroft and Karp '71] [Tarjan '75]

Hopcroft and Karp on the fly, with powerset construction:



$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$

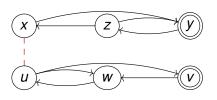
2

$$X+y$$

$$V+Z$$

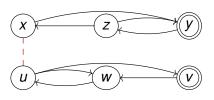
$$X+Y+Z$$

$$U+V+V$$



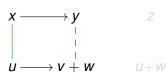
$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$



$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

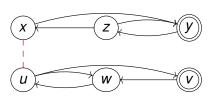
$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$



$$X+y$$

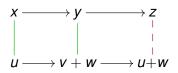
$$y+z$$

$$X+Y+Z$$



$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$

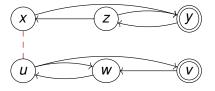


$$x+y$$

$$y+z$$

$$x+y+z$$

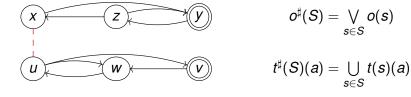
$$U+V+V$$

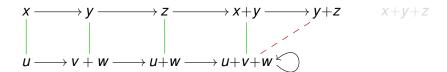


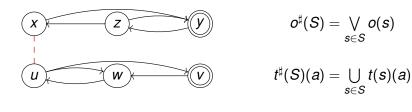
$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

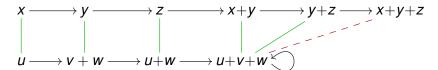
$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$

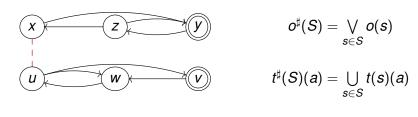
$$y+z$$
 $x+y+z$

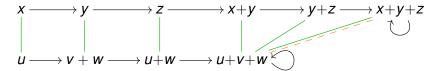


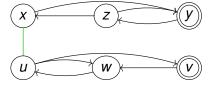






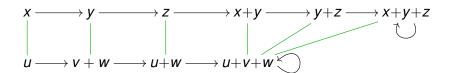




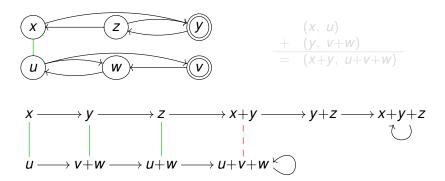


$$o^{\sharp}(S) = \bigvee_{s \in S} o(s)$$

$$t^{\sharp}(S)(a) = \bigcup_{s \in S} t(s)(a)$$

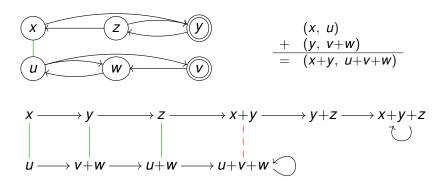


One can do better:



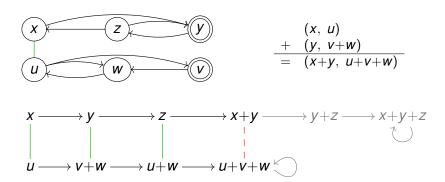
using bisimulations up to union

One can do better:



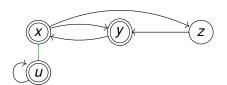
using bisimulations up to union

One can do better:

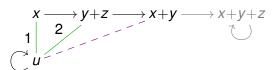


using bisimulations up to union

One can do even better:

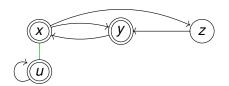


$$\begin{array}{rcl}
x+y &=& u+y & (1) \\
&=& y+z+y & (2) \\
&=& y+z
\end{array}$$

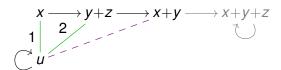


using bisimulations up to congruence

One can do even better:

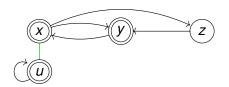


$$x+y = u+y$$
 (1)
= $y+z+y$ (2)
= $y+z$
= u (2)

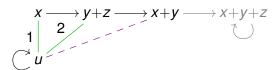


using bisimulations up to congruence

One can do even better:

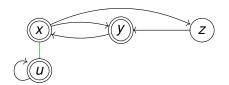


$$x+y = u+y$$
 (1)
= $y+z+y$ (2)
= $y+z$
= u (2)

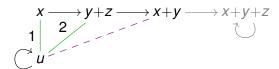


using bisimulations up to congruence

One can do even better:



$$x+y = u+y$$
 (1)
= $y+z+y$ (2)
= $y+z$
= u (2)



using bisimulations up to congruence

HKC is also parametric

```
\begin{array}{l} \operatorname{HKC}(X,Y)\colon\\ \hline (1) \ R \ \text{is empty; } todo \ \text{is } \{(X',Y')\};\\ (2) \ \text{while } todo \ \text{is not empty, do}\\ (2.1) \ \operatorname{extract}\ (X',Y') \ \operatorname{from } todo;\\ (2.2) \ \operatorname{if}\ (X',Y') \in c(R \cup todo) \ \operatorname{then continue;}\\ (2.3) \ \operatorname{if}\ o^\sharp(X') \neq o^\sharp(Y') \ \operatorname{then return } false;\\ (2.4) \ \operatorname{for all}\ a \in A,\\ \qquad \qquad \qquad \operatorname{insert}\ (t^\sharp(X')(a),t^\sharp(Y')(a)) \ \operatorname{in } todo;\\ (2.5) \ \operatorname{insert}\ (X',Y') \ \operatorname{in }\ R;\\ (3) \ \operatorname{return } true; \end{array}
```

Powerset construction o^{\sharp} , t^{\sharp}

Generalized to other algebraic structures / functors (weighted, Moore, probabilistic automata, ...)

Applicable for must/may testing, failure, ...

HKC is also parametric

```
\begin{array}{l} \underline{\mathsf{HKC}}(X,Y)\colon\\ \hline (1) \ R \ \text{is empty; } todo \ \text{is } \{(X',Y')\};\\ (2) \ \text{while } todo \ \text{is not empty, do}\\ (2.1) \ \underline{\mathsf{extract}}\ (X',Y') \ \text{from } todo;\\ (2.2) \ \mathrm{if}\ (X',Y') \in c(R \cup todo) \ \text{then continue;}\\ (2.3) \ \mathrm{if}\ o^\sharp(X') \neq o^\sharp(Y') \ \text{then return } false;\\ (2.4) \ \mathrm{for all}\ a \in A,\\ \qquad \qquad \qquad \qquad \text{insert } (t^\sharp(X')(a), t^\sharp(Y')(a)) \ \text{in } todo;\\ (2.5) \ \mathrm{insert}\ (X',Y') \ \mathrm{in}\ R;\\ (3) \ \mathrm{return}\ true; \end{array}
```

Powerset construction o^{\sharp} , t^{\sharp}

Generalized to other algebraic structures / functors (weighted, Moore, probabilistic automata, ...)

Applicable for must/may testing, failure, ...

Trends / opportunities

Trend I: New language constructs

Trend II: NetKat – applications in networks

Trend III: Automata learning

Trend I: New language constructs

- Extensions of programming languages with coinductive constructs (Agda, CoCaml, ...).
- Algorithms like general HKC enable efficient representation and equivalence check.

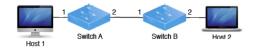
Opportunity for concurrency

- New methods to check equivalence of behaviors.
- Automatic derivation of programming constructs for new models.

Trend II: NetKAT – semantic foundations for networks

Anderson, Foster, Guha, Jeannin, Kozen, Schlesinger, Walker, POPL'14

- Specifying and reasoning about networks.
- Based on Kleene algebra with tests (KAT).



Recent work (submitted)

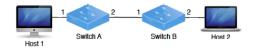
- Coinductive model of KAT extended to NetKAT.
- Brzozowski and HKC for NetKAT.

Opportunity for concurrency

 Foundations of networks: transference of results, new challenges.

Trend II: NetKAT – semantic foundations for networks Anderson, Foster, Guha, Jeannin, Kozen, Schlesinger, Walker, POPL'14

- · Specifying and reasoning about networks.
- Based on Kleene algebra with tests (KAT).



Recent work (submitted)

- Coinductive model of KAT extended to NetKAT.
- Brzozowski and HKC for NetKAT.

Opportunity for concurrency

 Foundations of networks: transference of results, new challenges.

Trend III: automata learning

- Angluin's algorithm: inference of regular languages.
- Coalgebra enables generalizations to e.g. weighted automata.

Opportunity for concurrency

- Inference of behaviors in distributed systems.
- Applications in security.

Conclusions

- Coalgebra has applications in automata and concurrency.
- Bridge to transfer results and tools.
- (Co)algebra is not only semantics but also algorithms!

Thanks! Questions?

Conclusions

- Coalgebra has applications in automata and concurrency.
- Bridge to transfer results and tools.
- (Co)algebra is not only semantics but also algorithms!

Thanks! Questions?

Conclusions

- Coalgebra has applications in automata and concurrency.
- Bridge to transfer results and tools.
- (Co)algebra is not only semantics but also algorithms!

Thanks! Questions?

