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Context

Tools and proof techniques for systems equivalence

Methodology:
1. characterise coinductively a given notion of equivalence

2. improve the associated proof method
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Deterministic finite automata

The states x and u are language equivalent
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Correctness

» A relation R is a bisimulation if x R y entails

> o(x) = o(y);
» for all a, t,(x) R ti(y).
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Correctness

» A relation R is a bisimulation if x R y entails

> o(x) = o(y);
» for all a, t,(x) R ti(y).

» Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation
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First improvement
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First improvement

One can stop much earlier
[Hopcroft and Karp '71]

Complexity: almost linear [Tarjan '75]
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Correctness of the improvement

Correctness of HK algorithm, revisited:

» Denote by R€ the equivalence closure of R
» R is a bisimulation up to equivalence if x R y entails

> o(x) = oly);
» for all a, t,(x) R® ti(y).
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Use Hopcroft and Karp on the fly, through the powerset
construction:
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Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

y+z—— x+y+z

X y z x+y
/ w
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Non-Deterministic Automata

One can do better:

T2y (x, u)

+ (v, vtw)

= (xty, utv+w)
0T w2y

[
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u— v+w — u+w — ut+v+w

using bisimulations up to union

Coalgebraic Up-to Techniques

X Yy z X+y y+z——x+ty+z

10/20



Non-Deterministic Automata

One can do even better:

N

T ye—z

x|

y+z x+y x+y+z

Coalgebraic Up-to Techniques 11/20



Non-Deterministic Automata

One can do even better:

o y+—1z x+y =  uty
= y+zty
= y+z

<

Coalgebraic Up-to Techniques

11/20



Non-Deterministic Automata

One can do even better:

o y+—1z x+y =  uty
= y+zty
= y+z

<

Coalgebraic Up-to Techniques

11/20



Non-Deterministic Automata

One can do even better:

X Cy+—1z x+y =  uty
= y+zty
= y+z

u = u

X y+z X+y X+y+z
1| 2 -

usingcgsimulations up to congruence
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Non-Deterministic Automata

One can do even better:

X Cy+—1z x+y = uty (1)
= y+z+y (2)
= y—|—z

u = u (2)

X y+z > X4y X+y+z

o2 e |,

this yield to the HKC algorithm [Bonchi, Pous'13]
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Outline

Up-to techniques at work

Stream calculus

Abstract coinduction in complete lattices
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Coinductive stream calculus [Rutten’03]

Streams can be defined by behavioural differential equations:

(c+7) =0 +7 o(c+7)=o0(c)+o(r) (sum)
(c@7)=0d®@7+0 ® 7! o(c®@71)=o0(c) x o(r) (shuffle)
(e =@ toc?) o(c7!) = o(0)™? (inverse)
(i) = o(iy=1i (numbers)

A bisimulation is a relation R such that o R 7 entails o(c) = o(7)
and o' R 7/

» Let us show that o +0 ~ o
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and o' R 7/

» Let us show that o +0 ~ o

» How about c ® 1 ~ ¢?
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Lessons learned from the examples

» A wide range of up-to techniques
> up to equivalence
> up to bisimilarity
> up to union
> up to context
» For different kind of systems
» {deterministic,non-deterministic, (weighted) } automata,
» streams
» process algebra [Milner'89, Sangiorgi'98]
» Sometimes they need to be combined together
» union and equivalence ~»  congruence (NFA)
» cand R+— ~R~ ~ R+ ~c(R)~ (streams)
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up to equivalence
up to bisimilarity
up to union

up to context

For different kind of systems

>

>

>

{deterministic,non-deterministic, (weighted) } automata,
streams
process algebra [Milner'89, Sangiorgi'98]

Sometimes they need to be combined together

>

>

union and equivalence ~»  congruence (NFA)
cand R+— ~R~ ~ R+ ~c(R)~ (streams)

... but is this composition always sound?
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Two questions

» Can we study all these proof principles in one framework?

» Can we derive conditions for soundness?
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Compatiblity

Use Pous's algebra of enhancements: abstract framework in terms
of lattices and monotone functions.

» b-simulation: R C b(R);
» b-simulation up to f: R C b(f(R))
» Definition: f is if fobC bof

b-compatible functions: f sound and closed under composition

v
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FT-Coalgebra

Coalgebras make it possible to encompass the previous examples in

a uniform setting:

systems | functor (F) | monad (T)
deterministic automata 2x A (-)
non-deterministic automata | 2 x (=) | P¢(-)
weigthed automata Rx (=)* | RM)
streams R x — (—)

First generalized powerset construction and then finality:

[1

X —15 T(X) » Q
| A J
th
FTX s FQ

FI1

Behavioural equivalence becomes x ~,, vy = [n(x)] = [n(y)]
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Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x.y) | 3z € FR, F(nf) = a(x), F(rf) = a(y)}
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Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x.y) | 3z € FR, F(nf) = a(x), F(rf) = a(y)}

Proposition [Rot, Bonchi, Bonsangue, Pous, Rutten, Silva'13]:
b, satisfies (1) iff F preserves weak pullbacks

> up to equivalence (almost) always comes for free
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Contexts: bialgebras

What about the up to union/context techniques?

» They are all instances of the same framework
we just exploit some algebraic structure of the state-space:

> a semilattice for non-deterministic automata
» a vector space for weighted automata
» a syntax for streams

» Can be captured using A-bialgebras:
A TF=FT

X 2 x 2 Fx
(eoB=FBoAxoTa)
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Summary

Coalgebras make it possible

> to exploit the abstract theory of up-to techniques for a wide
range of systems

> to design algorithms in a uniform way
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