Coalgebraic Up-to Techniques

Alexandra Silva

(joint with Bonsangue, Bonchi, Pous, Rot & Rutten)

Radboud University Nijmegen & CWI Amsterdam

Shonan Meeting 026 07.10.2013

(slide credits: Damien Pous)

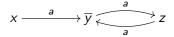
Context

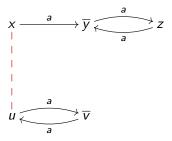
Tools and proof techniques for systems equivalence

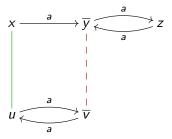
Methodology:

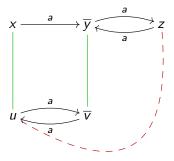
- 1. characterise coinductively a given notion of equivalence
- 2. improve the associated proof method

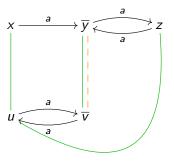
up-to techniques

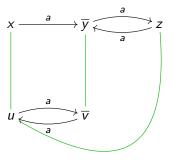


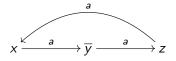


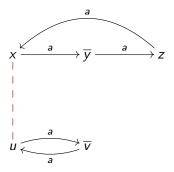


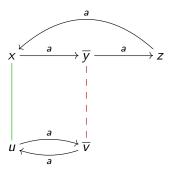


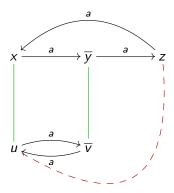


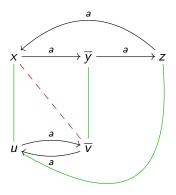


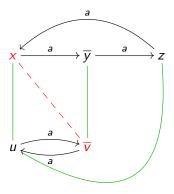












Correctness

- \blacktriangleright A relation R is a bisimulation if x R y entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.

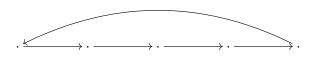
Correctness

- \triangleright A relation R is a bisimulation if x R y entails
 - o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation R with x R y

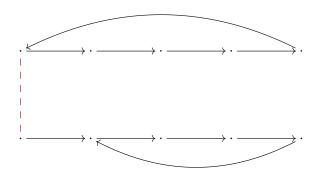
Correctness

- \triangleright A relation R is a bisimulation if x R y entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation R with x R y

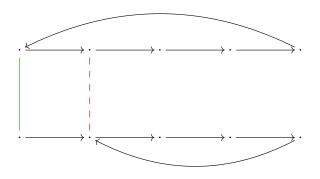
The previous algorithm attempts to construct a bisimulation



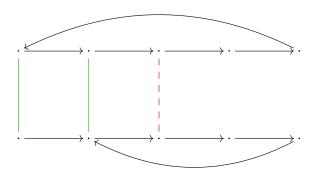
The previous algorithm is quadratic



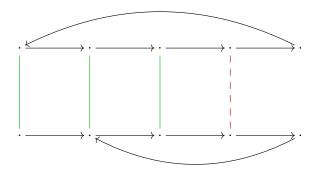
The previous algorithm is quadratic



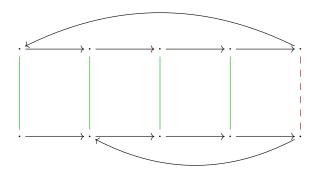
The previous algorithm is quadratic



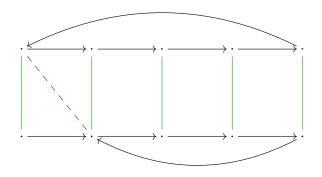
The previous algorithm is quadratic

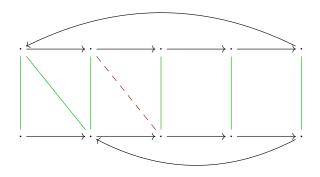


The previous algorithm is quadratic

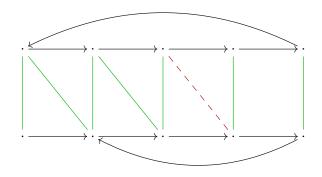


The previous algorithm is quadratic



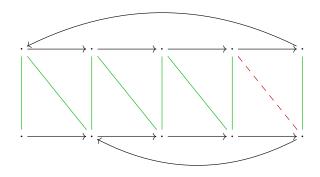


6 pairs

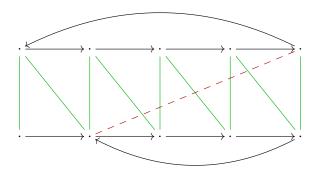


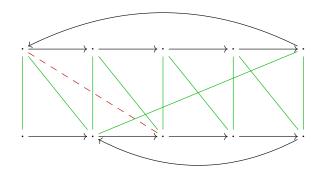
7 pairs

The previous algorithm is quadratic



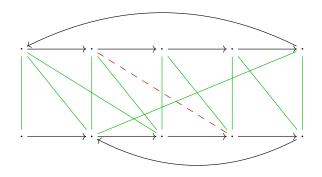
The previous algorithm is quadratic

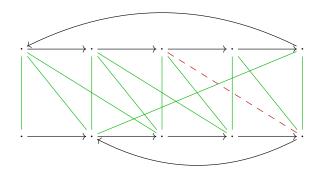




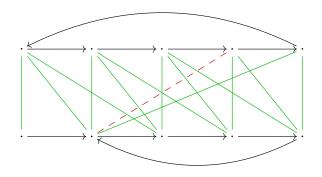
10 pairs

The previous algorithm is quadratic

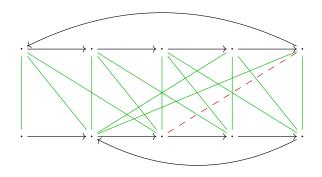




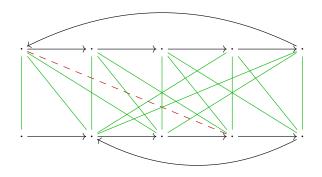
12 pairs



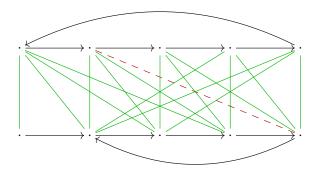
13 pairs



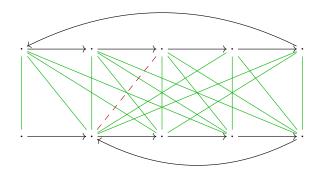
14 pairs



15 pairs

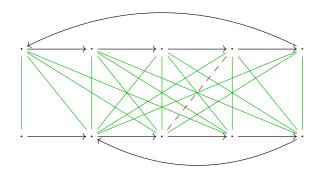


16 pairs



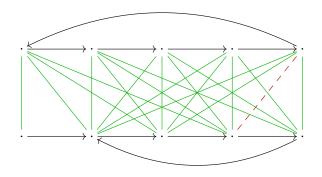
17 pairs

The previous algorithm is quadratic



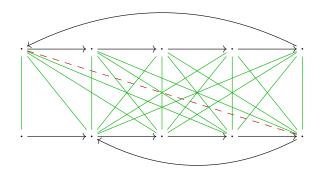
18 pairs

The previous algorithm is quadratic



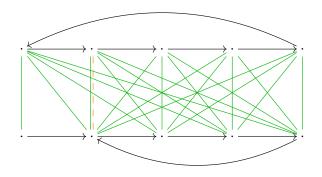
19 pairs

The previous algorithm is quadratic



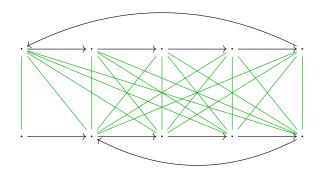
20 pairs

The previous algorithm is quadratic

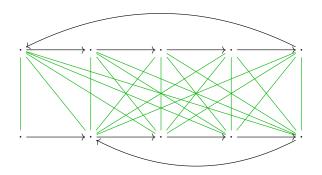


21 pairs

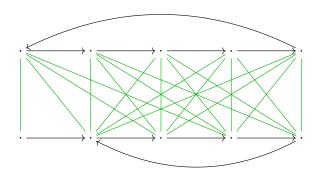
The previous algorithm is quadratic



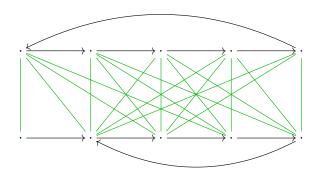
21 pairs



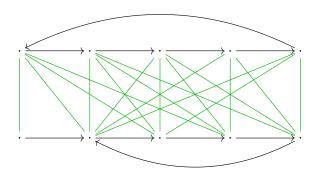
21 pairs



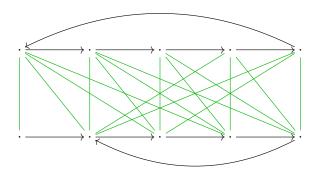
21 20 pairs



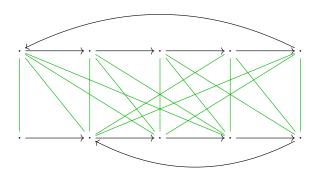
21 19 pairs



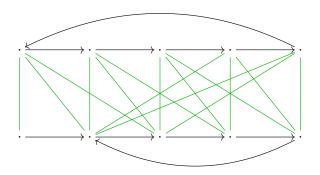
21 18 pairs



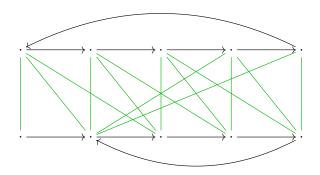
21 17 pairs



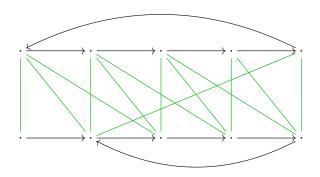
21 16 pairs



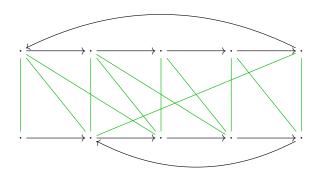
21 15 pairs



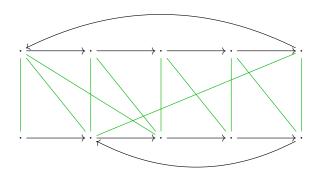
21 14 pairs



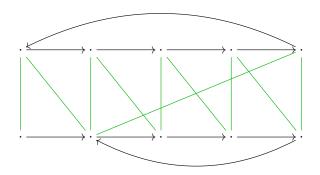
21 13 pairs



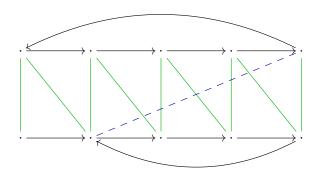
21 12 pairs



21 11 pairs

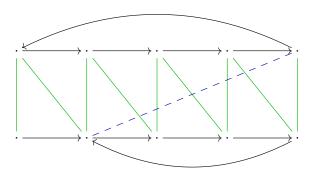


21 10 pairs



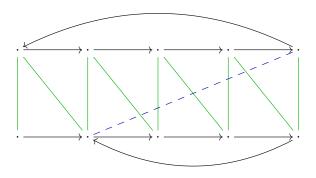
21 9 pairs

One can stop much earlier



[Hopcroft and Karp '71]

One can stop much earlier



[Hopcroft and Karp '71]

Complexity: almost linear

[Tarjan '75]

Correctness of the improvement

Correctness of HK algorithm, revisited:

- ▶ Denote by R^e the equivalence closure of R
- \triangleright R is a bisimulation up to equivalence if x R y entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.

Correctness of the improvement

Correctness of HK algorithm, revisited:

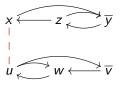
- ▶ Denote by R^e the equivalence closure of R
- \triangleright R is a bisimulation up to equivalence if x R y entails
 - o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation up to equivalence R, with x R y

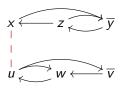
Correctness of the improvement

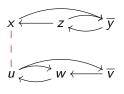
Correctness of HK algorithm, revisited:

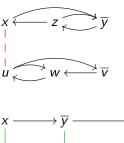
- ▶ Denote by R^e the equivalence closure of R
- ightharpoonup R is a bisimulation up to equivalence if x R y entails
 - o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation up to equivalence R, with x R y

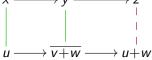
Ten years before Milner and Park!

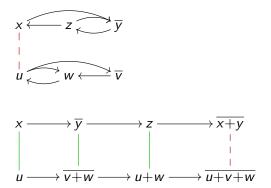


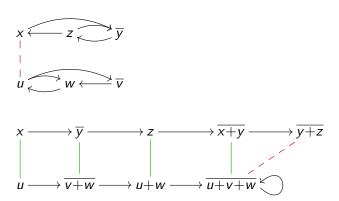


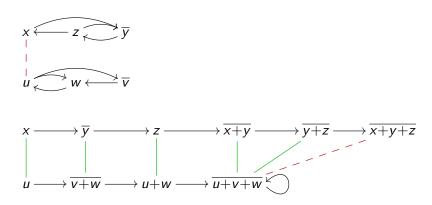


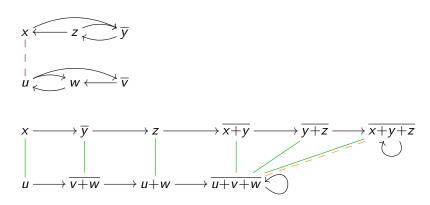


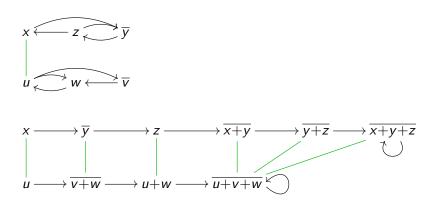




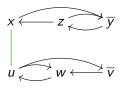


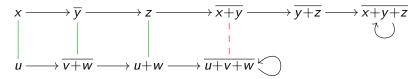




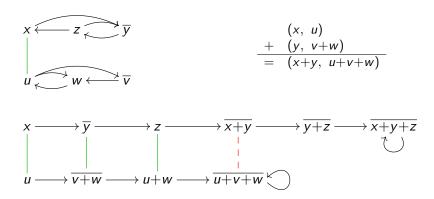


One can do better:

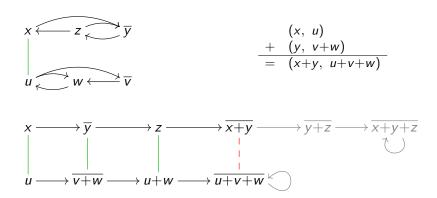




One can do better:

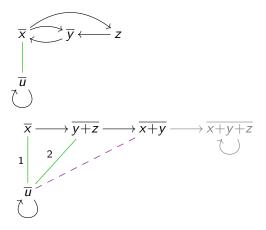


One can do better:

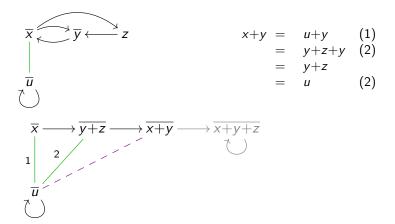


using bisimulations up to union

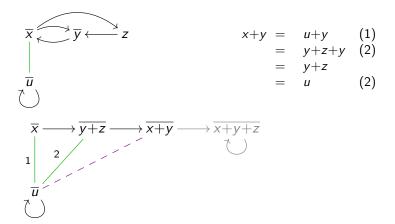
One can do even better:



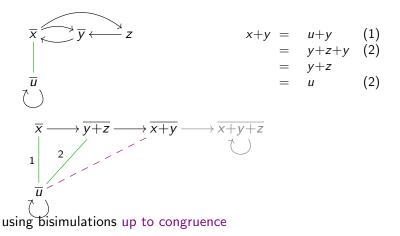
One can do even better:



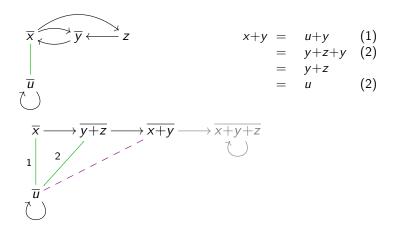
One can do even better:



One can do even better:



One can do even better:



this yield to the HKC algorithm [Bonchi, Pous'13]

Outline

Up-to techniques at work

Deterministic finite automata Non-Deterministic Automata

Stream calculus

Abstract coinduction in complete lattices

Streams can be defined by behavioural differential equations:

$$\begin{split} (\sigma+\tau)' &= \sigma' + \tau' & o(\sigma+\tau) = o(\sigma) + o(\tau) & \text{(sum)} \\ (\sigma\otimes\tau)' &= \sigma'\otimes\tau + \sigma\otimes\tau' & o(\sigma\otimes\tau) = o(\sigma)\times o(\tau) & \text{(shuffle)} \\ (\sigma^{-1})' &= -\sigma'\otimes(\sigma^{-1}\otimes\sigma^{-1}) & o(\sigma^{-1}) = o(\sigma)^{-1} & \text{(inverse)} \\ (i)' &= 0 & o(i) = i & \text{(numbers)} \end{split}$$

A bisimulation is a relation R such that σ R τ entails $o(\sigma) = o(\tau)$ and σ' R τ'

▶ Let us show that $\sigma + 0 \sim \sigma$

Streams can be defined by behavioural differential equations:

$$\begin{split} (\sigma+\tau)' &= \sigma' + \tau' & o(\sigma+\tau) = o(\sigma) + o(\tau) & \text{(sum)} \\ (\sigma\otimes\tau)' &= \sigma'\otimes\tau + \sigma\otimes\tau' & o(\sigma\otimes\tau) = o(\sigma)\times o(\tau) & \text{(shuffle)} \\ (\sigma^{-1})' &= -\sigma'\otimes(\sigma^{-1}\otimes\sigma^{-1}) & o(\sigma^{-1}) = o(\sigma)^{-1} & \text{(inverse)} \\ (i)' &= 0 & o(i) = i & \text{(numbers)} \end{split}$$

A bisimulation is a relation R such that σ R τ entails $o(\sigma) = o(\tau)$ and σ' R τ'

- ▶ Let us show that $\sigma + 0 \sim \sigma$
- ▶ How about $\sigma \otimes 1 \sim \sigma$?

Streams can be defined by behavioural differential equations:

$$\begin{split} (\sigma+\tau)' &= \sigma' + \tau' & o(\sigma+\tau) = o(\sigma) + o(\tau) & \text{(sum)} \\ (\sigma\otimes\tau)' &= \sigma'\otimes\tau + \sigma\otimes\tau' & o(\sigma\otimes\tau) = o(\sigma)\times o(\tau) & \text{(shuffle)} \\ (\sigma^{-1})' &= -\sigma'\otimes(\sigma^{-1}\otimes\sigma^{-1}) & o(\sigma^{-1}) = o(\sigma)^{-1} & \text{(inverse)} \\ (i)' &= 0 & o(i) = i & \text{(numbers)} \end{split}$$

A bisimulation up to \sim and is a relation R such that σ R τ entails $o(\sigma) = o(\tau)$ and $\sigma' \sim R \sim \tau'$

- ▶ Let us show that $\sigma + 0 \sim \sigma$
- ▶ How about $\sigma \otimes 1 \sim \sigma$?
- And $\sigma \otimes \sigma^{-1} \sim 1$?

Streams can be defined by behavioural differential equations:

$$\begin{split} (\sigma+\tau)' &= \sigma' + \tau' & o(\sigma+\tau) = o(\sigma) + o(\tau) & \text{(sum)} \\ (\sigma\otimes\tau)' &= \sigma'\otimes\tau + \sigma\otimes\tau' & o(\sigma\otimes\tau) = o(\sigma)\times o(\tau) & \text{(shuffle)} \\ (\sigma^{-1})' &= -\sigma'\otimes(\sigma^{-1}\otimes\sigma^{-1}) & o(\sigma^{-1}) = o(\sigma)^{-1} & \text{(inverse)} \\ (i)' &= 0 & o(i) = i & \text{(numbers)} \end{split}$$

A bisimulation up to \sim and up to context is a relation R such that σ R τ entails $o(\sigma) = o(\tau)$ and $\sigma' \sim c(R) \sim \tau'$

- ▶ Let us show that $\sigma + 0 \sim \sigma$
- ▶ How about $\sigma \otimes 1 \sim \sigma$?
- And $\sigma \otimes \sigma^{-1} \sim 1$?

Lessons learned from the examples

- A wide range of up-to techniques
 - ▶ up to equivalence
 - ▶ up to bisimilarity
 - ▶ up to union
 - up to context
- ► For different kind of systems
 - ► {deterministic,non-deterministic,(weighted)} automata,
 - streams
 - process algebra [Milner'89, Sangiorgi'98]
- Sometimes they need to be combined together

 - c and $R \mapsto \sim R \sim \qquad \rightsquigarrow \qquad R \mapsto \sim c(R) \sim \qquad \text{(streams)}$

Lessons learned from the examples

- A wide range of up-to techniques
 - ▶ up to equivalence
 - ▶ up to bisimilarity
 - ▶ up to union
 - up to context
- For different kind of systems
 - ► {deterministic,non-deterministic,(weighted)} automata,
 - streams
 - process algebra [Milner'89, Sangiorgi'98]
- Sometimes they need to be combined together

 - ▶ c and $R \mapsto \sim R \sim \qquad \Rightarrow \qquad R \mapsto \sim c(R) \sim \qquad \text{(streams)}$
- ... but is this composition always sound?

Two questions

- ► Can we study all these proof principles in one framework?
- ► Can we derive conditions for soundness?

Compatiblity

Use Pous's algebra of enhancements: abstract framework in terms of lattices and monotone functions.

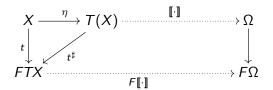
- ▶ *b*-simulation: $R \subseteq b(R)$;
- ▶ *b*-simulation up to $f: R \subseteq b(f(R))$
- ▶ Definition: f is b-compatible if $f \circ b \subseteq b \circ f$
- ▶ b-compatible functions: f sound and closed under composition

FT-Coalgebra

Coalgebras make it possible to encompass the previous examples in a uniform setting:

systems	functor (F)	monad (T)
deterministic automata	$2 \times -^A$	(-)
non-deterministic automata	$2 \times (-)^A$	$\mathcal{P}_{f}(-)$
weigthed automata	$\mathbb{R} \times (-)^A$	$\mathbb{R}^{(-)}$
streams	$\mathbb{R} \times -$	(-)

First generalized powerset construction and then finality:



Behavioural equivalence becomes $x \sim_{\alpha} y \triangleq \llbracket \eta(x) \rrbracket = \llbracket \eta(y) \rrbracket$

Coalgebraic bisimulation

Given an F-coalgebra (X, α) , define the following function on binary relations:

$$b_{\alpha}(R) = \{(x, y) \mid \exists z \in FR, \ F(\pi_1^R) = \alpha(x), F(\pi_2^R) = \alpha(y)\}$$

Coalgebraic bisimulation

Given an F-coalgebra (X, α) , define the following function on binary relations:

$$b_{\alpha}(R) = \{(x, y) \mid \exists z \in FR, \ F(\pi_1^R) = \alpha(x), F(\pi_2^R) = \alpha(y)\}$$

Proposition [Rot, Bonchi, Bonsangue, Pous, Rutten, Silva'13]: b_{α} satisfies (†) iff F preserves weak pullbacks $(\dagger) \ \forall R \ S, \ b(R) \cdot b(S) \subseteq b(R \cdot S)$

▶ up to equivalence (almost) always comes for free

Contexts: bialgebras

What about the up to union/context techniques?

- They are all instances of the same framework we just exploit some algebraic structure of the state-space:
 - a semilattice for non-deterministic automata
 - a vector space for weighted automata
 - a syntax for streams
- ▶ Can be captured using λ -bialgebras:

$$\lambda: TF \Rightarrow FT$$

$$TX \xrightarrow{\beta} X \xrightarrow{\alpha} FX$$

$$(\alpha \circ \beta = F\beta \circ \lambda_X \circ T\alpha)$$

[Turi&Plotkin'97, Bartels'04, Klin'11]

Summary

Coalgebras make it possible

- to exploit the abstract theory of up-to techniques for a wide range of systems
- ▶ to design algorithms in a uniform way

```
(e.g., HKC for must-testing [Bonchi, Caltais, Pous, Silva'13])
```