Towards a nominal Chomsky hierarchy

Alexandra Silva

Radboud University Nijmegen Centrum Wiskunde & Informatica

July 20, 2015 Wollic 2015 Bloomington, Indiana

Context

- Names are pervasive in computer science;
- Semantics of programming languages (α -equivalence);

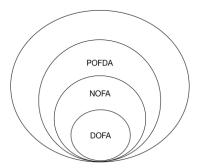
$$f(a) = 2 * a \quad g(b) = 2 * b$$

- Range of proposals for sound semantics:
 Pistore-Montanari, Gabbay-Pitts, . . .
- Nominal sets (Fraenkel and Mostowski, early twentieth century).

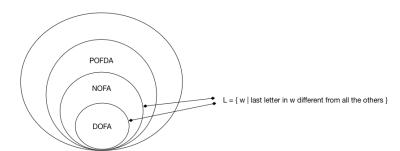
Context

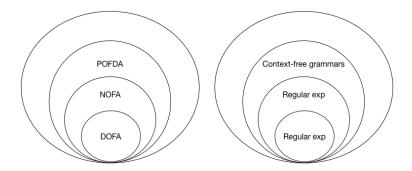
- Francez and Kaminski: finite memory automata.
- Montanari and Pistore: HD-automata.
- Murawski and Tzevelekos: fresh-register automata.
- Bojanczyk, Klin, Lasota: extensive results on nominal automata theory.
- Gabbay and Ciancia: nominal Kleene algebras.
- Kurz, Suzuki, Tuosto: regular expressions for HD-automata.

Key point in Polish work: new notion of finiteness, orbit-finiteness.

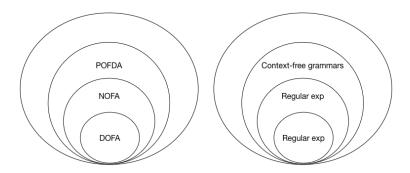


Unexpected things happen with orbit-finiteness.





Language hierarchy and correspondence theorems?



Murawski (June 2015): to this day we still do not have a satisfactory notion of nominal regular language.

This talk: some results, many problems...

- Nominal Kleene algebra does not give a Kleene Theorem.
- New automaton model for one-sided Kleene Theorem.
- New proposal for regular languages.

Kozen, Mamouras, Silva. *Completeness and Incompleteness of Nominal KA.*Kozen, Mamouras, Petrisan, Silva. *Nominal Kleene coalgebra.*

Nominal Sets [Gabbay & Pitts, LICS 1999]

Nominal Sets

a convenient framework for name generation, binding,
 α-conversion

Applications

- logic: quantifiers
- programming language semantics: references, objects, pointers, function parameters
- XML document processing
- cryptography: nonces

Group Action

- Let G be a group and X a set
- A group action of G on X is a map $G \times X \to X$ such that

$$\pi(\rho x) = (\pi \rho) x \qquad 1x = x$$

- A G-set is a set X equipped with a group action $G \times X \to X$
- $f: X \to Y$ is equivariant if $f \circ \pi = \pi \circ f$ for all $\pi \in G$

Nominal Sets

- Let A be a countably infinite set of atoms
- Let G be the group of all finite permutations of A
 (permutations generated by transpositions (ab))
- If G acts on X, say that $A \subseteq \mathbb{A}$ supports $x \in X$ if

Fix
$$A \subseteq fix x$$

where fix
$$x = \{\pi \in G \mid \pi x = x\}$$
 and Fix $A = \bigcap_{x \in A} \text{fix } x$

Nominal Sets

- $x \in X$ has finite support if there is a finite $A \subseteq \mathbb{A}$ that supports x
- If x ∈ X has finite support, then it has a minimum supporting set supp x, the support of x
- Write a#x and say a is fresh for x if a ∉ supp x
- A nominal set is a set X with a group action of G such that every element has finite support

Nominal Sets

Example

- A = {variables}
- $X = \{\lambda \text{-terms over } A\}$
- If $\pi \in G$ and $\pi a = a$ for $a \in FV(x)$, then $\pi x = x$ (α -conversion)
- A ⊆ A supports x ⇐⇒ FV(x) ⊆ A
- supp x = FV(x)
- a#x iff a ∉ FV(x)

$$(bc)((\lambda b.a(bb))(\lambda b.a(bb))) = (\lambda c.a(cc))(\lambda c.a(cc))$$

More examples

- The set \mathbb{A} is a G-set under the group action $\pi a = \pi(a)$. It is a nominal set with supp $(a) = \{a\}$.
- The set $\mathcal{P}\mathbb{A}$ is a G-set, but not a nominal set.
- The set P_{fs}A of finite and co-finite subsets of A is a nominal set.

Kleene Algebra

Idempotent Semiring Axioms

$$p + (q + r) = (p + q) + r$$
 $p(qr) = (pq)r$
 $p + q = q + p$ $1p = p1 = p$
 $p + 0 = p$ $p0 = 0p = 0$
 $p + p = p$
 $p(q + r) = pq + pr$ $a \le b \stackrel{\triangle}{\Longleftrightarrow} a + b = b$
 $(p + q)r = pr + qr$

Axioms for *

$$1 + pp^* \le p^* \qquad q + px \le x \Rightarrow p^*q \le x$$

$$1 + p^*p \le p^* \qquad q + xp \le x \Rightarrow qp^* \le x$$

Standard Model

Regular sets of strings over Σ

$$A + B = A \cup B$$

$$AB = \{xy \mid x \in A, y \in B\}$$

$$A^* = \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots$$

$$1 = \{\varepsilon\}$$

$$0 = \emptyset$$

This is the free KA on generators Σ

Relational Models

Binary relations on a set X

For
$$R, S \subseteq X \times X$$
,
$$R + S = R \cup S$$

$$RS = R \circ S = \{(u, v) \mid \exists w \ (u, w) \in R, \ (w, v) \in S\}$$

$$R^* = \text{reflexive transitive closure of } R$$

$$= \bigcup_{n \geq 0} R^n = R^0 \cup R^1 \cup R^2 \cup \cdots$$

$$1 = \text{identity relation} = \{(u, u) \mid u \in X\}$$

$$0 = \emptyset$$

KA is complete for the equational theory of relational models

Other Models

- Trace models used in semantics
- (min, +) algebra used in shortest path algorithms
- (max, +) algebra used in coding
- Convex sets used in computational geometry (Iwano & Steiglitz 90)
- Matrix algebras

Nominal KA [Gabbay & Ciancia 2011]

A nominal Kleene algebra (NKA) over atoms A is a structure

$$(K,+,\cdot,^*,0,1,\nu)$$

with $\nu: \mathbb{A} \times K \to K$ such that

- K is a nominal set over A
- the KA operations and ν are equivariant:

$$\pi(x+y) = \pi x + \pi y$$
 $\pi(0) = 0$
 $\pi(xy) = (\pi x)(\pi y)$ $\pi(1) = 1$
 $\pi(x^*) = (\pi x)^*$ $\pi(\nu a.e) = \nu(\pi a).\pi e$

equivalently, every $\pi \in G$ is an automorphism of K

• all the KA axioms are satisfied and ν satisfies...

Nominal Axioms [Gabbay & Ciancia 2011]

Odersky style axioms	interaction with KA operators
	u a.(d + e) = u a.d + u a.e
ν a. ν b.e = ν b. ν a.e	$a\#e\Rightarrow (u a.d)e= u a.de$
$a\#e\Rightarrow u b.e = u a.(a\ b)e$	$a\#e\Rightarrow e(u a.d)= u a.ed$

Nominal KA [Gabbay & Ciancia 2011]

Expressions

$$e ::= a \in \Sigma \mid e + e \mid ee \mid e^* \mid 0 \mid 1 \mid \nu a.e$$

The operator νa is a binding operator whose scope is e. The set of expressions over Σ is denoted Exp_{Σ}

ν -strings

A ν -string is an expression with no occurrence of +, *, 0, or 1 (except to denote the null string, in which case we use ε)

$$x ::= a \in \Sigma \mid xx \mid \varepsilon \mid \nu a.x$$

The set of ν -strings over Σ is denoted Σ^{ν} .

$$\mathit{NL}: \mathsf{Exp}_\mathbb{A} o \mathcal{P}(\mathbb{A}^*)$$

Example:

$$\mathit{NL}(\nu a.ab) = \{ab \mid a \neq b\}$$

 $\mathit{NL}((\nu a.ab)(\nu a.ab)) = \{abcb \mid a, c \in A \text{ distinct and different than } b\}$

Care must be taken when defining product to avoid capture!

$$\mathit{NL}: \mathsf{Exp}_\mathbb{A} o \mathcal{P}(\mathbb{A}^*)$$

Example:

$$\mathit{NL}(\nu a.ab) = \{ab \mid a \neq b\}$$

 $\mathit{NL}((\nu a.ab)(\nu a.ab)) = \{abcb \mid a, c \in \mathbb{A} \text{ distinct and different than } b\}$

Care must be taken when defining product to avoid capture!

$$\mathit{NL}: \mathsf{Exp}_\mathbb{A} o \mathcal{P}(\mathbb{A}^*)$$

Example:

$$\mathit{NL}(\nu a.ab) = \{ab \mid a \neq b\}$$

 $\mathit{NL}((\nu a.ab)(\nu a.ab)) = \{abcb \mid a, c \in \mathbb{A} \text{ distinct and different than } b\}$

Care must be taken when defining product to avoid capture!

Intermediate interpretation as sets of ν -strings over $\mathbb A$

$$I: \mathsf{Exp}_\mathbb{A} o \mathcal{P}(\mathbb{A}^{\nu})$$

 $+,\cdot,^*$, 0, and 1 have their usual set-theoretic interpretations, and

$$I(\nu a.e) = {\nu a.x \mid x \in I(e)}$$
 $I(a) = {a}.$

Examples

```
I(\nu a.a) = \{\nu a.a\}
I(\nu a.\nu b.(a+b)) = \{\nu a.\nu b.a, \nu a.\nu b.b\}
I(\nu a.(\nu b.ab)(a+b)) = \{\nu a.(\nu b.ab)a, \nu a.(\nu b.ab)b\}
I(\nu a.(ab)^*) = \{\nu a.\varepsilon, \nu a.ab, \nu a.abab, \nu a.ababab, \dots\}
I((\nu a.ab)^*) = \{\varepsilon, \nu a.ab, (\nu a.ab)(\nu a.ab), (\nu a.ab)(\nu a.ab)(\nu a.ab)
```

Intermediate interpretation as sets of ν -strings over $\mathbb A$

$$I: \mathsf{Exp}_\mathbb{A} o \mathcal{P}(\mathbb{A}^{\nu})$$

 $+,\,\cdot,\,^*,\,0,$ and 1 have their usual set-theoretic interpretations, and

$$I(\nu a.e) = {\nu a.x \mid x \in I(e)}$$
 $I(a) = {a}.$

Examples

$$I(\nu a.a) = \{ \nu a.a \}$$
 $I(\nu a.\nu b.(a+b)) = \{ \nu a.\nu b.a, \nu a.\nu b.b \}$
 $I(\nu a.(\nu b.ab)(a+b)) = \{ \nu a.(\nu b.ab)a, \nu a.(\nu b.ab)b \}$
 $I(\nu a.(ab)^*) = \{ \nu a.\varepsilon, \nu a.ab, \nu a.abab, \nu a.ababab, \ldots \}$
 $I((\nu a.ab)^*) = \{ \varepsilon, \nu a.ab, (\nu a.ab)(\nu a.ab), (\nu a.ab)(\nu a.ab)(\nu a.ab) \}$

$$NL: \mathbb{A}^{\nu} \to \mathcal{P}(\mathbb{A}^*)$$

- α -convert so that all bindings in x are distinct and different from free variables in x
- delete all binding operators νa to obtain $x' \in \mathbb{A}^*$
- $NL(x) = {\pi(x') \mid \pi \in fix \, FV(x)}$
- $NL(e) = \bigcup_{x \in I(e)} NL(x)$

Example

```
NL((\nu a.ab)(\nu a.ab)(\nu a.ab))
= \{abcbdb \mid a, c, d \in \mathbb{A} \text{ distinct and different from } b\}
```

Completeness and Incompleteness

Lemma

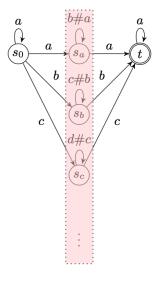
For $x, y \in \mathbb{A}^{\nu}$, $\vdash x = y$ if and only if NL(x) = NL(y).

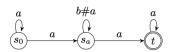
Incompleteness

$$\forall a \leq \nu a.a \text{ but } NL(a) = \{a\} \subseteq \mathbb{A} = NL(\nu a.a)$$

- Do we have a Kleene Theorem for NKA as in the classical case?
- Attempt 1: NKA denotes languages accepted by DOFA.

DOFA





- State space X nominal set.
- Finite → Orbit-finite

$$orbit(x) = \{\pi x \mid \pi \in G_{\mathbb{A}}\}\$$

Orbit-finite state space:
 X = {s₀} + A + {t}

 $\{w \in \mathbb{A}^* \mid \exists a.a \text{ occurs twice in } w\}$

NKA and the DOFA are equivalent?

- Unfortunately not...
- Simplest (worrying example): (νa.a)*.

```
\{w \in \mathbb{A}^* \mid \text{all letters in } w \text{ are different}\}
```

- Not accepted by a deterministic or non-deterministic orbit-finite automaton!
- It is however accepted by a special finite nominal automaton

with a suitable acceptance condition

NKA and the DOFA are equivalent?

- Unfortunately not...
- Simplest (worrying example): (νa.a)*.

```
\{w \in \mathbb{A}^* \mid \text{all letters in } w \text{ are different}\}
```

- Not accepted by a deterministic or non-deterministic orbit-finite automaton!
- It is however accepted by a special finite nomina automaton

with a suitable acceptance condition

NKA and the DOFA are equivalent?

- Unfortunately not...
- Simplest (worrying example): (νa.a)*.

```
\{w \in \mathbb{A}^* \mid \text{all letters in } w \text{ are different}\}
```

- Not accepted by a deterministic or non-deterministic orbit-finite automaton!
- It is however accepted by a special finite nominal automaton

4 D > 4 P > 4 B > 4 B > B 9 9 0

NKA and the DOFA are equivalent?

- Unfortunately not...
- Simplest (worrying example): (νa.a)*.

```
\{w \in \mathbb{A}^* \mid \text{all letters in } w \text{ are different}\}
```

- Not accepted by a deterministic or non-deterministic orbit-finite automaton!
- It is however accepted by a special finite nominal automaton

with a suitable acceptance condition.

A second attempt...

NKA and special nominal automata are equivalent.

- Unfortunately not...
- only one-side Kleene theorem.
- Special nominal automata are very similar to Tzevelekos fresh-register automata.

Nominal Kleene Coalgebra [ICALP'15]

- Nominal versions of the syntactic and semantic nominal Brzozowski derivative
- Finitely supported sets of ν-strings modulo the Gabbay–Ciancia axioms form the final coalgebra
- Half a Kleene theorem (expressions ⇒ automata)
- exponential space decision procedure

Nominal fresh-register automata

 $(X, \mathsf{obs}, \mathsf{cont}, \mathsf{cont}_{\nu})$

- X is a nominal set
- Equivariant transitions

$$egin{aligned} \mathsf{obs} &: X o 2 \ \mathsf{cont}_a &: X o X, \ a \in \mathbb{A} \ \mathsf{cont}_{
u a} &: \{s \in X \mid a\#s\} o X, \ a \in \mathbb{A} \end{aligned}$$

Acceptor of ν-strings

```
\mathsf{Accept}(s, \varepsilon) = \mathsf{obs}(s)

\mathsf{Accept}(s, am) = \mathsf{Accept}(\mathsf{cont}_a(s), m)

\mathsf{Accept}(s, \nu a.am) = \mathsf{Accept}(\mathsf{cont}_{\nu a}(s), m), \ a\#s.
```

Example

The automaton

accepts exactly the ν -strings denoted by $(\nu a.a)^*$.

Crucial point: the automaton does not accept directly $w \in \mathbb{A}^*$.

Example

The automaton

accepts exactly the ν -strings denoted by $(\nu a.a)^*$.

Crucial point: the automaton does not accept directly $w \in \mathbb{A}^*$.

Half of a Kleene Theorem

Theorem

Every expression corresponds to a nominal automaton.

Proof.

We show that an automaton structure can be defined inductively on the set of α -equivalence classes of NKA expressions $\exp_{\mathbb{A}}/\equiv_{\alpha}$.

Syntactic Brzozowski derivative

$$\mathsf{E}\colon \mathsf{Exp}_{\mathbb{A}}/{\equiv_{\alpha}}\to \mathsf{2}$$

$$E(e_1 + e_2) = E(e_1) + E(e_2)$$
 $E(e_1 e_2) = E(e_1)E(e_2)$
 $E(a) = E(0) = 0$ $E(1) = E(e^*) = 1$ $E(\nu a.e) = E(e)$

Syntactic Brzozowski derivative

$$\mathsf{D}_{\pmb{a}} : \mathsf{Exp}_{\mathbb{A}}/\equiv_{\alpha} o \mathsf{Exp}_{\mathbb{A}}/\equiv_{\alpha} ext{ for } \pmb{a} \in \mathbb{A}.$$

$$\begin{array}{ll} \mathsf{D}_a(e_1+e_2) = \mathsf{D}_a(e_1) + \mathsf{D}_a(e_2) & \mathsf{D}_a(e_1e_2) = \mathsf{D}_a(e_1)e_2 + \mathsf{E}(e_1)\mathsf{D}_a(e_2) \\ \mathsf{D}_a(e^*) = \mathsf{D}_a(e)e^* & \mathsf{D}_a(0) = \mathsf{D}_a(1) = 0 \\ \mathsf{D}_a(b) = \begin{cases} 1, & b = a \\ 0, & b \neq a \end{cases} & \mathsf{D}_a(\nu b.e) = \begin{cases} 0, & b = a \\ \nu b.\mathsf{D}_a(e), & b \neq a \end{cases} \end{array}$$

◆ロ > ◆母 > ◆ 達 > ◆ 達 > り へ ②

Syntactic Brzozowski derivative

$$\mathsf{D}_{\nu a}: \{ \textit{e} \in \mathsf{Exp}_{\mathbb{A}}/{\equiv_{\alpha}} \mid \textit{a\#e} \} \to \mathsf{Exp}_{\mathbb{A}}/{\equiv_{\alpha}} \qquad \text{ for } \textit{a} \in \mathbb{A}.$$

$$egin{aligned} & \mathsf{D}_{
u a}(e_1+e_2) = \mathsf{D}_{
u a}(e_1) + \mathsf{D}_{
u a}(e_2) \ & \mathsf{D}_{
u a}(e_1e_2) = \mathsf{D}_{
u a}(e_1)e_2 + \mathsf{E}(e_1)\mathsf{D}_{
u a}(e_2) \ & \mathsf{D}_{
u a}(e^*) = \mathsf{D}_{
u a}(e)e^* \ & \mathsf{D}_{
u a}(
u b.e) =
u b.\mathsf{D}_{
u a}(e) + \mathsf{D}_{a}((a\ b)e), \ b \neq a \ & \mathsf{D}_{
u a}(0) = \mathsf{D}_{
u a}(1) = \mathsf{D}_{
u a}(b) = 0 \end{aligned}$$

Example

For $b \neq a$,

- 1. $D_{\nu a}(\nu b.bb) = \nu b.D_{\nu a}(bb) + D_a((a b)bb) = 0 + a = a.$
- 2. $D_{\nu a}(\nu a.aa) = D_{\nu a}(\nu b.bb) = a.$
- 3. $D_{\nu a}(\nu a.ab) = D_{\nu a}(\nu c.cb) = \nu c.D_{\nu a}(cb) + D_a(ab) = 0 + b = b.$
- 4. $D_{\nu a}(\nu b.ba) = \nu b.D_{\nu a}(ba) + D_a((a b)ba) = 0 + b = b.$

Antimirov derivative

There is an analog of the Antimirov derivative for NKA of type

$$\mathcal{A}: \mathsf{Exp}_{\mathbb{A}} \to (\wp \, \mathsf{Exp}_{\mathbb{A}})^{\mathbb{A} + \mathbb{A}}$$

$$egin{aligned} &\mathcal{A}_{a}(e_1+e_2)=\mathcal{A}_{a}(e_1)\cup\mathcal{A}_{a}(e_2)\ &\mathcal{A}_{a}(e_1e_2)=\mathcal{A}_{a}(e_1)\{e_2\}\cup\mathsf{E}(e_1)\mathcal{A}_{a}(e_2) \end{aligned}$$

Half Kleene

Theorem (Half Kleene)

For every NKA expression e, there is a coalgebra X with designated start state s such that $L_X(s) = L(e)$. The coalgebra has an orbit-finite nondeterministic representation given by the Antimirov representation of the Brzozowski derivatives of e.

Halk of Kleene Theorem does not work for deterministic automata!

Half Kleene

Theorem (Half Kleene)

For every NKA expression e, there is a coalgebra X with designated start state s such that $L_X(s) = L(e)$. The coalgebra has an orbit-finite nondeterministic representation given by the Antimirov representation of the Brzozowski derivatives of e.

Halk of Kleene Theorem does not work for deterministic automata!

Brzozowski vs Antimirov

$$e = (\nu a.a)^* (\nu a.a (\nu b.b)^* a).$$

$$\begin{array}{cccc}
\nu a & \nu b \\
\downarrow & \nu a & \downarrow & \downarrow \\
\hline
s_0 & \nu a & \downarrow & \downarrow \\
\end{array}$$

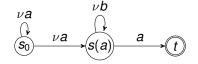
$$e \xrightarrow{\nu a} e + (\nu b.b)^* a$$

$$\xrightarrow{\nu b} e + (\nu b.b)^* b + (\nu b.b)^* a$$

$$\xrightarrow{\nu c} e + (\nu b.b)^* c + (\nu b.b)^* b + (\nu b.b)^* a \xrightarrow{\nu d} \cdots$$

Brzozowski vs Antimirov

$$e = (\nu a.a)^* (\nu a.a (\nu b.b)^* a).$$



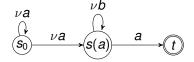
$$e \xrightarrow{\nu a} e + (\nu b.b)^* a$$

$$\xrightarrow{\nu b} e + (\nu b.b)^* b + (\nu b.b)^* a$$

$$\xrightarrow{\nu c} e + (\nu b.b)^* c + (\nu b.b)^* b + (\nu b.b)^* a \xrightarrow{\nu d} \cdots$$

Brzozowski vs Antimirov

$$e = (\nu a.a)^* (\nu a.a (\nu b.b)^* a).$$



$$e \xrightarrow{\nu a} e + (\nu b.b)^* a$$

$$\xrightarrow{\nu b} e + (\nu b.b)^* b + (\nu b.b)^* a$$

$$\xrightarrow{\nu c} e + (\nu b.b)^* c + (\nu b.b)^* b + (\nu b.b)^* a \xrightarrow{\nu d} \cdots$$

Open Problems

• Other half of the Kleene theorem is false:

$$s_0(a)$$
 b
 $s_1(a,b)$
 a
 $s_0(b)$
 b
 $s_1(b,a)$
 va

The set of ν -strings accepted from state $s_0(a)$ is

$$\{\varepsilon, \nu b.ba, \nu b.ba(\nu a.ab), \nu b.ba(\nu a.ab(\nu b.ba)), \nu b.ba(\nu a.ab(\nu b.ba(\nu a.ab))), \ldots\}$$

Requires unbounded ν -depth!

Open Problems

- Can we characterize bounded ν -depth automata in a way that would lead to a converse of the Kleene theorem?
- Complexity?
- Can we extend the syntax of expressions to capture sets of unbounded ν-depth? Yes:

$$X_a = \varepsilon + \nu b.b Y_{ab}$$
 $Y_{ab} = a X_b$

... but this leaves us with the task of providing proof rules and proving completeness (Nominal iteration algebras?)

- Nominal automata theory has important applications...
- There has been a lot of important work and progress...
- Unfortunately, there are still many open questions...
- ...and very basic ones.

- Nominal automata theory has important applications...
- There has been a lot of important work and progress...
- Unfortunately, there are still many open questions...
- ...and very basic ones.

- Nominal automata theory has important applications...
- There has been a lot of important work and progress...
- Unfortunately, there are still many open questions...
- ...and very basic ones.

- Nominal automata theory has important applications...
- There has been a lot of important work and progress...
- Unfortunately, there are still many open questions...
- ...and very basic ones.